
Introduction to C++

F. Giacomini

INFN – CNAF



Introduction



1

Bibliography and useful online resources

• Learn C++, https://learncpp.com/: online resource with
tutorials, examples and exercises

• C++ Core Guidelines: guidelines for the correct use of C++

• B. Stroustrup, A tour of C++, 3rd edition, Addison-Wesley. Part
of the contents from the 2nd edition is available online at
https://isocpp.org/tour

• B. Stroustrup, Programming: Principles and Practice Using C++,
2nd edition, Addison-Wesley

• B. Stroustrup, The C++ Programming Language, 4th edition,
Addison-Wesley

• Online reference: C++ reference, https://cppreference.com/

https://learncpp.com/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://stroustrup.com/tour3.html
https://isocpp.org/tour
https://stroustrup.com/programming.html
https://stroustrup.com/4th.html
https://cppreference.com/


2

Course outline

• Elements of computer architecture and operating systems
• Introduction to Linux/Unix
• Why C++

• Objects, types, variables
• Expressions
• Statements and structured programming
• Functions
• User-defined types and classes
• Generic programming and templates
• The Standard Library, containers, algorithms
• Error management
• Dynamic memory allocation
• Dynamic polymorphism (aka object-oriented programming)
• Elements of software engineering and supporting tools



Elements of computer architecture



3

The language of a computer

• A computer is a device that executes programs
• A program is a collection of instructions to perform a specific task
• For a computer to understand instructions, these need to be

expressed in a language that the computer can understand



4

Many types of computers

(from https://www.samsung.com/) (from https://www.ifixit.com/)

https://www.samsung.com/
https://www.ifixit.com/


5

Many types of computers (cont.)

(from https://www.raspberrypi.org/) (from https://www.fairphone.com/)

https://www.raspberrypi.org/
https://www.fairphone.com/


6

Many types of computers (cont.)



7

Many types of computers (cont.)

(from https://wiki.u-gov.it/confluence/display/SCAIUS)

https://wiki.u-gov.it/confluence/display/SCAIUS


8

Computers understand a binary language

00101001110110011000011111010111001011100111101100
11101000101001101011100111111100011101001000011010
00000110001101000011111010010001000101110000010010
00111011010111101101111110110011011111101100101101
10010010110011001101110011000011001011000001010010
11110100101111010001111001011000000000001111110100
10011101011000110101000111000000011100001101001101
00010001111001101000111100100110110110001101100100
01000110010111100011100010100101011011000110010001
10100011111101101000000000111101000001000100101101
11101100011010111001111110010101010110010010000100
00000010010011111010111011011101110011101100000111
00001001111011000000110000100110000101000100111011

bit byte (8 bits)

increment a number by 1 (for my laptop)



9

Programming language

• A (high-level) programming language is an artificial language to
write programs that is closer to humans

int increment(int n)
{

return n + 1;
}

• More or less equivalent to the mathematical function

increment(n) = n + 1 ∀n ∈ Z

• Some form of translation needs to be applied to the program
written in a high-level language to transform it into a program
expressed in a binary language

◦ A program expressed in a binary language is usually called
executable



10

Programming language (cont.)

• To complicate things, the binary language is computer-specific
(the correct term is architecture-specific)

◦ An Instruction Set Architecture (ISA) defines, among other things,
the binary instructions understood by a computer implementing
that architecture

◦ Many ISAs have been defined over the years, many still in use
◦ i386, x86_64, SPARC, MIPS, ARM, VAX, Alpha, RiscV,

PowerPC, . . .
• The translation from high-level language to binary language is

done by other programs
◦ compilers and interpreters



11

The Von Neumann architecture
Despite their differences, all architectures are inspired at the
architecture first described by John Von Neumann in 1945.

data
+

instructions

Memory CPU

Arithmetic-
Logic Unit

Control

Registers

Input

Output



12

The Von Neumann architecture (cont.)

• Imagine memory as a looooong tape divided into locations whose
content you can read and write

◦ Each location has the same size (let’s assume one byte, i.e. 8 bits)
◦ A piece of data can occupy multiple locations

• Each memory location is identified by an index
◦ e.g. location at position 8’363’944

• During execution, executables (i.e. binary programs) and the data
they manage stay both in memory, typically in different regions

• The CPU fetches binary instructions from memory into its
registers and executes them

• Typical instructions:
◦ read data (e.g. a number) from a memory location into a register
◦ write data (e.g. a number) from a register to a memory location
◦ manipulate data (e.g. increment a number or add two numbers) in

registers



13

Also data are binary

...01001110110011000011111010111001011100111101100
11101000101001101011100111111100011101001000011010
00000110001101000011111010010001000101110000010010
00111011010111101101111110110011011111101100101101
10010010110011001101110011000011001011000001010010
11110100101111010001111001011000000000001111110100
10011101100011011010010110000101101111000000001101
00010001111001101000111100100110110110001101100100
01000110010111100011100010100101011011000110010001
10100011111101101000000000111101000001000100101101
00001001111011000000110000100110000101000100111...

• read as integer number, the value is 1667850607
• read as floating-point number, the value is 4.30511 × 1021

• read as character string, the value is “ciao”



Basics



14

C++

• There are many programming languages, with very different
characteristics

• Why C++?
◦ general purpose
◦ support for multiple styles of programming (paradigms)
◦ much used in scientific fields, but also in games, finance,

telecommunications, embedded, . . .
◦ available on most architectures and operating systems
◦ efficient
◦ ISO standard



15

A minimal C++ program

• This program does nothing, successfully (details will be explained)

int main() {}

• Let’s write these 13 characters (including spaces) in a text
document, which we call minimal.cpp, using Visual Studio
Code

◦ In C++ terms, this text document is called source file
◦ Also, let’s start using the shell, writing commands in a Terminal

instead of clicking icons with the mouse

$
$ code minimal.cpp
$ cat minimal.cpp
int main() {}
$

this is the shell prompt
write this command (hit “Enter” at the end)

the cat command shows the contents of a text file

• Before executing the program we need to translate it into the
language of the computer



16

A minimal C++ program (cont.)
• In C++ the translation into a binary format is the job of the

compiler, which produces an executable file

Source file
(minimal.cpp)

Executable binary file
(a.out)

Compilation
(g++)

$ g++ minimal.cpp
$ ls
a.out minimal.cpp
$ ./a.out
$ g++ minimal.cpp -o minimal
$ ls
a.out minimal minimal.cpp
$ ./minimal
$

the ls command lists the contents of a directory

this command executes the program

• The -o option passed to the g++ command allows to give another
name to the final executable



17

Spaces

• Spaces are (almost) irrelevant

int main(){} int
main( ) {

}

intmain(){ }

space needed here

• Tools exist to consistently format source code to improve
readability

◦ They are customizable
◦ You are required to use them

$ clang-format minimal.cpp
int main()
{
}
$

# .clang-format file
...
AllowShortFunctionsOnASingleLine: false
BraceWrapping:

AfterFunction: true
...

• NL.4

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl4-maintain-a-consistent-indentation-style


18

Syntax check

• The compiler can translate a program into a binary executable
only if the code is syntactically correct

intmain() {}

$ g++ minimal.cpp
minimal.cpp:1:9: error: ISO C++ forbids declaration of 'intmain' with ...

1 | intmain() {}
| ^

$

• Error messages are usually precise about the cause of the error,
but not always

• Learn to interpret error messages



19

Comments

• Code can contain comments
int main() // comment until the end of the line
{
}

int main()
{

/* possibly multi-line comment
that goes until the final marker
and cannot nest */

}

• Comments are ignored by the compiler and are equivalent to
spaces

• Comments are for humans
◦ Prefer expressive code
◦ NL.1, NL.2, NL.3

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl1-dont-say-in-comments-what-can-be-clearly-stated-in-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl2-state-intent-in-comments
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl3-keep-comments-crisp


20

Basic notions of Input and Output

• The input and output system allows a program to interact with
the external world

• One mechanism offered by C++ to do input and output is the
I/O streams interface, which allows the creation and the
manipulation of stream entities

◦ Values are extracted from an input stream
◦ Values are inserted into an output stream

• Input and output streams connected to the terminal are
automatically available to a program

◦ std::cin, std::cout (and std::cerr for errors)
• To extract and insert values, use the stream operators >> and <<,

respectively



21

Hello

A less minimal C++ program (details will be explained)

#include <iostream> // import I/O utilities
#include <string> // import string utilities

int main() // start the program from here
{

std::cout << "What's your name? "; // print a message on the terminal
std::string name; // some space is needed in memory for a string
std::cin >> name; // read a string from the terminal into that space
std::cout << "Hello, " << name << '\n'; // print a multi-part message

}

$ g++ hello.cpp -o hello
$ ./hello
What's your name? Francesco
Hello, Francesco
$



22

Objects

• The constructs in a C++ program create, destroy, refer to,
access, and manipulate objects

• An object is a region of storage (i.e. memory)
◦ it has a type
◦ it has a lifetime
◦ it can have a name



23

Types

• A type gives meaning to a piece of storage
◦ What’s the meaning of a piece of storage that contains the

sequence of bits 01100011011010010110000101101111?
◦ Read as a sequence of alphabetic characters, it’s the letters c, i, a,

o
◦ Read as an integer number, it’s 1667850607
◦ Read as a floating-point number, it’s about 4.30511 × 1021

• A type identifies a set of values and the operations that can be
applied to those values

◦ C++ is a strongly typed language (mostly)
• A type is also associated with a machine representation for the

values belonging to the type



24

Types (cont.)

• The compiler checks that program instructions are compatible
with the type system

◦ C++ is a statically typed language (mostly)
• C++ defines a few fundamental types and provides mechanisms

to build compound types on top of them



25

Fundamental types

• arithmetic types
◦ integral types

− signed integer types: short int, int, long int, long long
int

− unsigned integer types: unsigned short int, unsigned int,
unsigned long int, unsigned long long int

− character types: char, signed char, unsigned char, . . .
− boolean types: bool

◦ floating-point types: float, double, long double
• std::nullptr_t

◦ type of the null pointer nullptr
• void

◦ denotes absence of type information
Size and representation may depend on the actual computer
architecture where the program runs



26

int

Type representing a signed integer number
• Set of values: subset of Z
• Operations: addition, subtraction, multiplication,

division, remainder, comparisons, . . .
• Representation: 2’s complement
• With N bits, values are in the range

[−2N−1, 2N−1 − 1]
• Intended to have the natural size suggested by the

architecture. Typical size is 32 bits (4 bytes)
◦ [−2 147 483 648, +2 147 483 647]

• Default type you should use to count and do integer
arithmetic

◦ ES.102

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000

-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es102-use-signed-types-for-arithmetic


27

Identifiers

• An identifier is a sequence of letters (including _) and digits,
starting with a letter

◦ Avoid _ at the beginning
• Identifiers are used to name entities in a program

◦ Choose meaningful names
◦ Get used to write in English

• NL.8

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl8-use-a-consistent-naming-style


28

Keywords

The following identifiers are reserved

alignas consteval final or_eq throw
alignof constexpr float override true
and constinit for private try
and_eq const_cast friend protected typedef
asm continue goto public typeid
auto co_await if register typename
bitand co_return import reinterpret_cast union
bitor co_yield inline requires unsigned
bool decltype int return using
break default long short virtual
case delete module signed void
catch do mutable sizeof volatile
char double namespace static wchar_t
char8_t dynamic_cast new static_assert while
char16_t else noexcept static_cast xor
char32_t enum not struct xor_eq
class explicit not_eq switch
compl export nullptr template
concept extern operator this
const false or thread_local



29

Variables

• A variable is an identifier that gives a name to an object

int i; // declaration; the value is undefined
i = 4321; // assignment of a constant
int j{1234}; // declaration and initialization in one step
i = j; // assignment of j's value to i

1
2
3
4

Memory

?

i

4321

4321

j

1234

1234 1234

1

2

3

4

NB At the end i and j have the same value but remain distinct
objects



30

Literals

A literal is a constant value of a certain type included in the source
code
• integer
• floating point
• character
• string
• boolean
• null pointer
• user-defined



31

Integer literals

decimal non-0 decimal digit followed by zero or more digits
• 1 -98 123456789 -1'234'567'890

binary 0b or 0B followed by binary digits
• 0b1101111010101101

0B111'0101'1011'1100'1101'0001'0101
exadecimal 0x or 0X followed by hexadecimal digits

• -0xdead 0xDEad123f 0XdeAD'123F
octal 0 followed by octal digits

• 01 -077 07'654'321
• N.B. A 0 in front of a number is meaningful!

Integer literals are of type int



32

std::string

• A compound (user-defined) type to represent a string of
characters

• Provided by the C++ Standard Library
• Many operations available
• An std::string can be initialized with a string literal, a

sequence of escaped or non-escaped characters between double
quotes

◦ "hello" "hello'\n'world" "hello \"world\""
◦ \n means “newline”

• The type of a string literal is not std::string

std::string corso{"Programmazione per la Fisica"};
corso = corso + "\nAnno Accademico 2023/2024";

concatenate



33

Expressions

• An expression is a sequence of operators and their operands that
specifies a computation

• Literals and variables are typical operands, but there are others

1 + 2
i = 1 + 2 // assignment
i == j // equality comparison
sqrt(x) > 1.42
std::cout << "hello, " << name << '\n'
a > 0 ? a - 1 : a + 1

• The evaluation of an expression typically produces a result
• Some expressions have side-effects

◦ They modify the state of the program, i.e. the state of memory, or
the external world

• Avoid complicated expressions (ES.40)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es40-avoid-complicated-expressions


34

Operators

Arithmetic

+a
-a
a + b
a - b
a * b
a / b
a % b
~a
a & b
a | b
a ^ b
a << b
a >> b

Logical

!a
a && b
a || b

Comparison

a == b
a != b
a < b
a > b
a <= b
a >= b

Increment

++a
--a
a++
a--

Assignments

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a &= b
a |= b
a ^= b
a <<= b
a >>= b

Access

a[b]
*a
&a
a->b
a.b

Other

a(· · ·)
a, b
? :

Plus: casts, allocation and deallocation, static introspection, . . .
• Rules exist for associativity, commutativity and precedence

◦ When in doubt use parentheses (ES.41)
• Many operators can be overloaded for user-defined types

◦ e.g. + to concatenate strings

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize


Flow control



35

Algorithm

A finite sequence of precisely defined steps to solve a problem



36

Sum of two numbers

A program that reads two numbers from input and writes their sum
to output

start

read a, b

result ← a + b

write
result

stop

#include <iostream>

int main()
{

int a;
int b;
std::cin >> a >> b;
int result{a + b};
std::cout << result << '\n';

}

Memory

· · ·

std::cout

3

a

4

b

7

result



37

Statement

Statements are units of code that are executed in sequence
• expression statement
• compound statement or block
• declaration statement
• selection statement
• iteration statement
• jump statement
• . . .



38

Sum of two numbers

A program that reads two numbers from input and writes their sum
to output

start

read a, b

result ← a + b

write
result

stop

#include <iostream>

int main()
{

int a;
int b;
std::cin >> a >> b;
int result{a + b};
std::cout << result << '\n';

}

Memory

· · ·

std::cout

3

a

4

b

7

result



39

Expression statement

• An expression followed by a semicolon (;)
• The value of the expression (if any) is discarded
• The expression can have side effects

◦ Indeed, we often write statements with the purpose to change
data in memory or to do I/O (input/output)

b + 2;
a = b + 2;
std::cin >> a >> b;
; // empty statement



40

Compound statement (or block)

A sequence of zero or more statements enclosed between braces ({})

{
found = true;
++i;
int n{3};
std::cout << n;

}

{ found = true; ++i; · · · } // all on one line



41

Declaration statement

• A declaration statement introduces one or more new identifiers
into a C++ program, possibly initializing them

◦ typically variables, but not only
• A declaration of a variable in a block makes the variable of

automatic storage duration, unless otherwise specified
◦ the corresponding object is automatically created each time the

declaration is executed
◦ the corresponding object is automatically destroyed each time the

execution reaches the end of the block
• A declaration should introduce only one identifier (ES.10)
• A variable should be declared only in the moment it’s actually

needed (ES.21)
• A variable should be initialized at the point of declaration (ES.20)

◦ There are very few exceptions, if any, to this recommendation

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es10-declare-one-name-only-per-declaration
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es21-dont-introduce-a-variable-or-constant-before-you-need-to-use-it
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object


42

Scope

The scope of a name appearing in a program is the, possibly
discontiguous, portion of source code where that name is valid
• block scope
• function scope
• class scope
• namespace scope (including the global one)
• . . .



43

Block scope

• The scope of a name declared in a block starts at the point of
declaration and ends at the }

{
num + 1; // error
int num; // scope of num begins only here
std::cin >> num; // ok

} // scope of num ends here
std::cout << num; // error

• The scope of a variable should be as small as possible (ES.5)
◦ Declare a variable only when it’s needed
◦ If possible/meaningful, initialize it

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es5-keep-scopes-small


44

The smallest of two numbers
A program that reads two numbers from input and writes the
smallest to output

start

read a, b

a < b

result ← a result ← b

write
result

stop

yes no

#include <iostream>

int main()
{

int a;
int b;
std::cin >> a >> b;
int result;
if (a < b) {

result = a; // (1)
} else {

result = b; // (2)
}
std::cout << result << '\n'; // (3)

}

result cannot be defined in (1) and/or (2), otherwise it would not
be visible in (3)



45

if then else

• Selection statement to choose one of two flows of instructions
depending on a boolean condition

• Two (basic) forms:
◦ if ( condition-expr ) statement else statement
◦ if ( condition-expr ) statement

if (a < b) {
result = a; // "true" branch

} else {
result = b; // "false" branch

}

int i{· · ·};
if (i < 0) {

i = -i; // "true" branch
}

• condition-expr can be any expression whose result is of type
(convertible to) bool, i.e. either true or false

• statement can be a block, possibly including multiple statements
◦ In fact, the statement should always be a block



46

bool

Type representing a boolean value
• Set of values: false, true
• Operations: logical conjunction (and), disjunction (or) and

negation (not), assignment, comparison
• Size: typically 1 byte
• Representation: like the ints 0 and 1
• Literals: false and true

bool b{true};
b = i == j;
bool b2{i != 1234;}
bool b3{b2 && i < j}; // and
bool b4{i < j || i < k}; // or
bool b5{!(i == j)}; // not

• Note the use of parenthesis in !(i == j) to have the right
precedence of application of operators

assignment equality inequality



47

Logical operations

and True if both operands are true
op1 op2 op1 && op2

false false false
false true false
true false false
true true true

op2 is evaluated only if op1 is true
or True if at least one operand is true

op1 op2 op1 || op2
false false false
false true true
true false true
true true true

op2 is evaluated only if op1 is false
not Operand’s negation (or logical complement)

op !op
false true
true false



48

Example: is a number even?

A program that reads a number from input and tells if it’s even

start

read num

r ← num mod 2

r == 0

result ← true result ← false

write result

stop

yes no

#include <iostream>

int main()
{

int num;
std::cin >> num;
int r{num % 2};
bool result;
if (r == 0) {

result = true;
} else {

result = false;
}
// print 0/1
std::cout << result << '\n';
// print false/true
std::cout << std::boolalpha

<< result << '\n';
}

The whole if can be removed defining bool result{r == 0};



49

Exercise: the smallest of three numbers

Write a program that reads three numbers from standard input and
writes the smallest one to standard output



50

Integer square root
Write a program that computes the integer square root of a
non-negative integer number, i.e. the largest integer number whose
square is not greater than the given number

start

read n

i ← 1

i ← i + 1 i × i < n

i ← i − 1 i × i > n

write i

stop

no

yes

no

yes

#include <iostream>

int main()
{

int n;
std::cin >> n;
int i{1};
while (i * i < n) {

++i; // equivalent to i = i + 1
}
if (i * i > n) {

--i; // equivalent to i = i - 1
}
std::cout << i << '\n';

}



51

while loop

while ( condition-expr ) statement

• Execute repeatedly statement until condition-expr becomes false
• condition-expr is evaluated at the beginning of each iteration

◦ If condition-expr is already false at the beginning, statement is
never executed

• statement can be any statement
◦ It’s better if the statement is always a block

• statement should modify something so that the evaluation of
condition-expr may change

◦ Otherwise the loop may never terminate



52

Sum of the first N numbers

Write a program that reads a non-negative integer number N from
standard input, computes the sum of the first N numbers and writes
the result to standard output

#include <iostream>

int main()
{

int n;
std::cin >> n;
int sum{0}; // or just sum{}
int i{1};
while (i <= n) {

sum += i; // sum = sum + i
++i;

}
std::cout << sum << '\n';

}

#include <iostream>

int main()
{

int n;
std::cin >> n;
int sum{0};

for (int i{1}; i <= n; ++i) {
sum += i;

}
std::cout << sum << '\n';

}



53

for loop

for ( init-statement condition-expropt ; expressionopt ) statement
• Execute init-statement, which may be a single ;

◦ If init-statement contains declarations (e.g. the i variable in the
previous example), the scope of the declared names is the loop

• Execute repeatedly statement until condition-expr becomes false
• condition-expr is evaluated at the beginning of each iteration

◦ If condition-expr is already false at the beginning, statement is
never executed

◦ But init-statement is always executed



54

for loop (cont.)

for ( init-statement condition-expropt ; expressionopt ) statement
• expression is evaluated at the end of each iteration
• statement and/or expression should modify something so that the

evaluation of condition-expr may change
◦ Otherwise the loop may never terminate

• A for loop can always be transformed into a while loop and
viceversa

◦ Prefer a for loop when there is an obvious variable that controls
the loop

◦ ES.72, ES.73

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es72-prefer-a-for-statement-to-a-while-statement-when-there-is-an-obvious-loop-variable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es73-prefer-a-while-statement-to-a-for-statement-when-there-is-no-obvious-loop-variable


55

Integer square root with a for loop

Write a program that computes the integer square root of a
non-negative integer number, i.e. the largest integer number whose
square is not greater than the given number

#include <iostream>

int main()
{

int n;
std::cin >> n;
int i{1};
while (i * i < n) {

++i;
}
if (i * i > n) {

--i;
}
std::cout << i << '\n';

}

#include <iostream>

int main()
{

int n;
std::cin >> n;
int i{1}; // NB outside the loop
for ( ; i * i < n; ++i) ; // or {}

if (i * i > n) {
--i;

}
std::cout << i << '\n';

}



56

Exercise: the largest/smallest of N numbers

Write a program that reads an arbitrary sequence of numbers from
standard input and writes the largest (or smallest) one to standard
output
Hint 1: press Ctrl-D in the terminal to tell the program there is
nothing more to read from standard input
Hint 2: the expression std::cin.good() tells if it’s still possible to
read something from std::cin



57

double

Type representing a floating-point number
• Set of values: subset of R
• Operations: addition, subtraction, multiplication, division,

comparisons, . . .
• Representation: IEEE 754
• 64 bits, smallest values ≈ ±10−308, largest values ≈ ±10308

• Precision is about 16 decimal digits
• Literals in the form signopt significand exponentopt

◦ 42.0 1. -1.5 12.34e3 -.34E-3 -1234e-2
◦ · · ·en /· · ·En means ×10n

https://en.wikipedia.org/wiki/IEEE_754


58

float

Type representing a floating-point number
• Set of values: subset of R
• Operations: addition, subtraction, multiplication, division,

comparisons, . . .
• Representation: IEEE 754
• 32 bits, smallest values ≈ ±10−38, largest values ≈ ±1038

• Precision is about 7 decimal digits
• Literals in the form signopt significand exponentopt F

◦ 42.0f 1.F -1.5f 12.34e3F -.34E-3f -1234e-2F
◦ Same as double but with an f or F suffix

https://en.wikipedia.org/wiki/IEEE_754


59

Handle floating-point numbers with care

• Floating-point numbers are not real numbers
◦ Finite representation =⇒ there is a previous and a next

• When managing floating-point numbers one should take into
account rounding errors and inexact representations

float x{1'000'000'000.f};
std::cout << std::setprecision(10)

<< x - 32 << ' ' << x << ' ' << x + 32 // 1000000000 1000000000 1000000000
<< x + 32 - x << ' ' << x - x + 32; // 0 32

• Floating-point math in general is not associative
• When comparing floating-point numbers avoid the use of equality
• See What Every Computer Scientist Should Know About Floating

Point Arithmetic

https://cr.yp.to/2005-590/goldberg.pdf
https://cr.yp.to/2005-590/goldberg.pdf


60

Exercise: accumulate 0.001

Write a program that accumulates the float 0.001 (think a time
step of one millisecond) 1’000’000 times and prints the accumulated
value. Discuss the result.



61

Standard mathematical functions
The cmath header includes many ready-to-use mathematical
functions
• Exponential
• Power
• Trigonometric
• Interpolation
• Hyperbolic
• Floating-point manipulation, classification and comparison
• . . .

#include <cmath>
· · ·
double x{· · ·};
std::sqrt(x);
std::pow(x, .5);
std::sin(x);
std::log(x);
std::abs(x);

https://en.cppreference.com/w/cpp/header/cmath


62

Type conversions

• A value of type T1 may be converted implicitly to a value of type
T2 in order to match the expected type in a certain situation

1 + 2.3

◦ between numbers and bool
◦ between signed and unsigned numbers
◦ between numbers of different size
◦ between integral and floating-point numbers
◦ . . .

• Conversions sometimes are surprising
• Conversions can be explicit using static_cast

1 + static_cast<int>(2.3)

• Mechanims exist to define implicit and explicit conversions
involving user-defined types



63

const-safety

• Data qualified as const is logically immutable
• Data that is meant to be immutable should be const (Con.4)

int const x{1'000'000'000}; // or const int
std::cout << x + 32; // ok, read-only
x += 32; // error, trying to modify
int const y; // error, not initialized and not modifiable later

std::string const message{"Hello"};
std::cout << message + " Francesco"; // ok, read-only
message += " Francesco"; // error, trying to modify
std::string const empty_message; // ok! empty string

• Primitive types (e.g. int) and user-defined types such as
std::string) behave differently with respect to default
initialization, i.e. without an explicit initial value

◦ User-defined types can define what default initialization means
◦ For std::string it means “empty string”
◦ More later

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction


Functions



64

Functions

• A function abstracts a piece of code that performs a well-defined
task behind a well-defined interface

• A function associates a block of statements with
◦ a name
◦ a list of zero or more parameters

• A function may return a result
• Let’s consider the code that computes the integer square root

◦ Let’s give it a name → isqrt
◦ We pass isqrt a number → the list of parameters has only one

item of type int
◦ isqrt computes a value that we want back → the function

returns a value of type int

• F.1, F.10

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f1-package-meaningful-operations-as-carefully-named-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f10-if-an-operation-can-be-reused-give-it-a-name


65

The isqrt function

#include <iostream>

int main()
{

int n;
std::cin >> n;
int i{1};
while (i * i < n) {

++i;
}
if (i * i > n) {

--i;
}
std::cout << i << '\n';

}

Names on the two sides of
the call are independent

#include <iostream>

int isqrt(int n) // function definition
{

int i{1};
while (i * i < n) {

++i;
}
if (i * i > n) {

--i;
}
return i; // return statement

}

int main()
{

int n;
std::cin >> n;
int i{isqrt(n)}; // function call
std::cout << i << '\n';

}



66

Function declaration

• A function declaration contains the essential information needed
to invoke the function
return-type function-name ( parameter-list );

• If the declaration is followed by the actual block of statements
(the implementation of the function), it is also a definition
return-type function-name ( parameter-list ) { · · · }

◦ Note the block scope
• Each parameter in the parameter list is of the form

type nameopt
◦ type is mandatory
◦ name is optional

− in the declaration, but useful for documentation purposes
− in the definition if it’s not used (F.9)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f9-unused-parameters-should-be-unnamed


67

Function declaration (cont.)

• Parameters are separated by commas
• The parameter list can be empty, i.e. ()
• If the function returns nothing, the return type is void

int isqrt(int); // declaration
int count_words(std::string s) { · · · } // definition
double pow(double base, double exp); // declaration
void print(std::string); // declaration
int generate_random_number() { · · · } // definition



68

Returning from a function

• Within the function block, the return statement returns the
result (and the control) to the calling function

• For a function returning a non-void type
return expression ;
The result of expression must be convertible to the return type

• For a function returning void
return;
At the end of the function, return; is optional



69

Returning from a function (cont.)

• A function has only one entry point, but it may have multiple exit
points, i.e. there can be multiple return statements

bool is_prime(int n) {
// simple cases
if (n == 2) { return true; }
if (n == 1 || n % 2 == 0) { return false; }

// complex cases
· · ·

return result;
}



70

Invoking a function
• Invoking/calling a function is a type of expression of the form

F (E1, E2, . . . , EN)
◦ F is an expression that identifies a function, typically its name
◦ The Ei ’s are expressions, whose values are “passed” to the function

int s = isqrt(24);
std::cout << count_words("Hello, " + name);
print(std::to_string(pow(isqrt(24), 2)));

• Given a function

R F(T1 p1, · · ·, Tn pn) { · · · return ER; }

and a function call

R r = F(E1, · · ·, En);

◦ Each pi is initialized with the value of expression Ei
◦ r is initialized with the value of expression ER



71

Invoking a function (cont.)

• A function needs to be declared/defined before it’s used

int main()
{
· · ·
isqrt(num); // error
· · ·

}

int isqrt(int n)
{
· · ·

}

int isqrt(int n)
{
· · ·

}

int main()
{
· · ·
isqrt(num); // ok
· · ·

}

int isqrt(int);

int main()
{
· · ·
isqrt(num); // ok
· · ·

}

int isqrt(int n)
{
· · ·

}



72

Function definition
• The lifetime of parameters ends at the end of the block

bool is_prime(int n)
{
· · · n · · ·

} // the lifetime of n ends here

• A function can call other functions
bool is_prime(int n)
{
· · ·
int div{2};
int const s{isqrt(n)};
while (div <= s) {
· · ·

}

• A function should not be too long (F.3)
• A function should perform a single logical operation (F.2)
• Split long/complex functions into multiple parts, each

implemented as a function

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f3-keep-functions-short-and-simple
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation


73

Recursive functions

• A function can call itself, directly or indirectly
◦ This is called recursion
◦ Often an elegant alternative to a loop
◦ Not easy to master, don’t abuse

int sum_n(int n)
{

// assume n >= 0
if (n == 0) { // base case

return 0;
} else { // recursive case

return n + sum_n(n - 1);
}

}



74

Function overloading
• Multiple functions can have the same name

◦ But different lists of parameters (number and/or types)
• The compiler chooses the function that best matches the

arguments in the call
◦ It usually does what is expected, possibly applying appropriate

implicit conversions, but not always
◦ Compilation error if there is no match or no unique best match

• The return type doesn’t matter

void foo(int);
int foo(int, char);
bool foo(double);
int foo(std::string s);

foo(0); // call foo(int)
foo(0, '0'); // call foo(int, char);
foo(0.); // call foo(double)
foo(std::string{}); // call foo(std::string)
foo(0L); // long int, ambiguous, error
foo('a'); // call foo(int)
foo("a"); // call foo(std::string)



75

The main function
• The main (special) function is the entry point of a program
• It can have two forms

◦ int main() {· · ·}
◦ . . . (see later)

• If there is no return statement at the end, an implicit
return 0; is assumed

◦ 0 means success, different from 0 means failure
◦ Or use EXIT_SUCCESS and EXIT_FAILURE from <cstdlib>
◦ The returned value is available to the shell via the $? variable

#include <cstdlib>

int main() {
int n;
std::cin >> n;
if (std::cin.fail() || n < 0) {

std::cerr << "Invalid number\n";
return EXIT_FAILURE;

}
· · ·

}



76

Exercises

• Write a function pow that takes two ints and computes and
returns the value of the first (the base) raised to the power of the
second (the exponent)

• Write a function gcd that takes two ints and computes the
Gratest Common Denominator using the Euclid’s algorithm

• Write a function lcm that takes two ints and computes the Least
Common Multiple

• Write a function is_prime that takes an int and tells if it’s a
prime number

• More on edabit, leetcode, . . .

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://edabit.com/
https://leetcode.com/


77

How do we know the code we write is correct?

• Correctness is the absence of defects (also known as bugs) in a
software

• Correctness is the result of the application of multiple good
practices to the software developmente process

• One of the most effective techniques is testing
◦ Execute the code with reasonable and unreasonable input and see

if it behaves according to the expectations
◦ The purpose of testing is to (try to) break the code

Testing can reveal the presence of bugs,
not prove their absence!

• Here we focus on a form of testing called unit testing, where the
units (of code) under test are, for example, functions

• There are many tools/frameworks to do unit testing (Google Test,
Catch, Doctest, Boost.Test, . . . )

• Let’s use Doctest (https://github.com/doctest/doctest)

https://github.com/doctest/doctest


78

How to use Doctest

• On Compiler Explorer it’s available selecting it under “Libraries”
• Otherwise download locally a single header file into the directory

containing your code, e.g. using wget or curl
• At the top of your C++ file add the lines

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

• Don’t add main into your file
• After the declarations of the function(s) you want to test, add

lines like the following:

TEST_CASE("Testing isqrt") {
CHECK(isqrt(0) == 0);
CHECK(isqrt(9) == 3);
CHECK(isqrt(10) == 3);
CHECK(isqrt(-1) == 0);
· · ·

}

https://godbolt.org/
https://raw.githubusercontent.com/doctest/doctest/master/doctest/doctest.h


79

Memory layout of a process

• A process is a running program
• When a program is started the operating system brings the

contents of the corresponding file into memory according to
well-defined conventions

◦ Stack
− function local variables
− function call bookkeeping

◦ Heap
− dynamic allocation

◦ Global data
− literals and variables
− initialized and uninitialized (set to 0)

◦ Program instructions



81

Functions and the stack

int isqrt(int n)
{

int i{1};
while (i * i < n) {

++i;
}
if (i * i > n) {

--i;
}
return i;

}

int main()
{

int num;
std::cin >> num;
int result{isqrt(num)};
std::cout << result << '\n';

}

Stack

main

?result

5num

isqrt

2i

5n

%rsp

The state of the stack just
before returning from isqrt



82

Pass by-value, return by-value

Given a function

R F(T1 p1, · · ·, Tn pn) { · · · return ER; }

and a function call

R r = F(E1, · · ·, En);

• Each pi is initialized with the value of expression Ei
◦ Every time the function is called a new pi is created, which gets

destroyed at the end of the function
◦ NB if Ei is just a variable, pi is another object (a copy) and

changing it inside the function doesn’t change the original object
corresponding to the variable

• r is initialized with the value of expression ER



83

Stack frame

• A piece of memory allocated and dedicated to the execution of a
function

• It contains local variables (including function parameters), return
address, saved registers, . . .

• Managed in a Last-In, First-Out (LIFO) way
• The size of the stack frame is computed by the compiler
• There is a special register (the stack pointer register, %rsp) that

indicates the frame of the currently running function
• At runtime the allocation/deallocation of a frame consists simply

in subtracting/adding that frame size to the stack pointer register



84

Conditional/ternary operator expression

expressioncondition ? expressiontrue : expressionfalse

int gcd(int a, int b)
{

return (b == 0) ? a : gcd(b, a % b);
}

• Evaluate expressioncondition, whose value is of type (convertible
to) bool

• If true, expressiontrue is evaluated and the resulting value is the
value of the whole expression

• If false, expressionfalse is evaluated and the resulting value is
the value of the whole expression

• Similar to an if statement, but usable (and useful) where only an
expression is allowed

• The types of expressiontrue and expressionfalse are subject to some
constraints, but let’s assume that they have to be the same



85

break and continue for loops

• Within a loop block, the break statement allows to terminate the
loop

• Within a loop block, the continue statement allows to jump to
the end of the current iteration of the loop

• The same effect can be obtained with appropriate use of
conditionals, but the resulting code may be more complicated
(ES.77)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es77-minimize-the-use-of-break-and-continue-in-loops


86

Object initialization with braces

• An object can be initialized specifying its value between {}

int i{123};
float f{123.F};
std::string s{"hello"};

• Introduced as a universal form of initialization that could replace
all others, but there are situations where it’s not usable

• Protects against narrowing, i.e. loss of information caused by
implicit conversions

double d{1.}; // ok, no conversion
float f1{1.}; // ok, no information loss
float f2{d}; // error
float f3{9'999'999}; // ok, no information loss
float f3{99'999'999}; // error
int i{1.}; // error
int g{d}; // error



87

char

Type representing a character
• Set of values: letters in the alphabet (lower- and upper-case),

digits, punctuation marks, some special characters, . . .
• Size: typically 1 byte, but not necessarily
• Representation: let’s assume the ASCII encoding
• Literals: characters between single quotes

◦ 'a' 'B' '7' ',' '?' '#' '/'
• Some character literals need to be expressed as \-escaped

sequences
◦ '\'' '\\' '\n' '\t' '\0'

• A char is an integral type so it supports integral operations
◦ std::cout << '9' - '0'; // 9
◦ c < 'z';

https://en.wikipedia.org/wiki/ASCII


88

Exercises

• Write a function that takes a char and returns the corresponding
lowercase character if it is a letter; the same char otherwise

◦ e.g. 'A' → 'a', 'a' → 'a', ';' → ';'
• Write a function that takes two numeric operands of type double

and one operator of type char and returns the result of applying
that operator to the two operands. For example if the two
operands have values 2.0 and 3.0 respectively and the operator
has value '+', then the function returns a result with value 5.0.
If the operator is invalid, the function returns 0.



Pointers and references



89

Passing by value may be inconvenient

• Consider a function that increments an int object

void increment(??? n) {
// ++n

}

int number{42};
increment(number);
// number == 43

• NB The function does not return the new value; it modifies the
passed object in place

• We cannot write void increment(int n), because the
function would modify a copy of the original object



90

Passing by value may be expensive

Let’s consider a function that counts the number of words in a string

int count_words(std::string s)
{

int count{0};
· · · s · · ·
return count;

}

int main()
{

std::string text{· · ·};
int const res{count_words(text)};
std::cout << res << '\n';

}

• s is a copy of text
• I’m slightly cheating: not all

string memory goes on the
stack

main

res

Nel mezzo

del cammin di

nostra vita...

text

count_words

count

Nel mezzo

del cammin di

nostra vita...

s



91

Hexadecimal notation

• Numbers in hexadecimal notation are
represented in base sixteen

• Each digit has a value between zero and fifteen
(included)

• Sixteen symbols are needed for the digits
◦ 0 ... 9, A, B, C, D, E, F (also lowercase)

• In C++ numeric literals (i.e. constants) can be
expressed in hexadecimal notation, prepending
0x (or 0X) to the hexadecimal representation

◦ 0x9 == 9, 0xA == 10, 0x10 == 16
• Easy conversion between hex and binary

representation: each hex digit corresponds to
four bits

• Hex literals are typically used to represent raw
contents of memory or memory addresses

Hex Dec Bin
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111



92

Pointers

Where in memory does a given object reside?
0x0000 0xffff

0xbad0
pp

0xaa04

4321

i

0xab00

0xab00
p

0xbad0

1234

j

0xcd00

0xcd00
q

0xcb80

int i{4321};
int j{1234};
std::cout << &i; // 0xab00, address-of operator
std::cout << &j; // 0xcd00
int* p{&i}; // pointer declarator
std::cout << &p; // 0xbad0
int** pp{&p}; // &p is of type int**
p = &j;
int* q{p}; // p and q point to the same object

Note that int* is a new type and so is int**



93

Pointers (cont.)

0x0000 0xffff

1234

k

0xaacc

0xcd00
p

0xbad0

1234

j

0xcd00

0xcd00
q

null

q

0xcb80

int j{1234};
int* p{&j};
std::cout << *p; // 1234, dereference operator
int k{*p}; // k is a copy of j
*p = 5678;
++*p; // or ++(*p) for more clarity
int* q{p};
q = nullptr;
*q; // undefined behavior

Dereferencing a null pointer is a logical error (i.e. a bug)



94

Pointers (cont.)

• address-of operator: &
◦ Given an object, it returns its address in memory

• dereference operator: *
◦ Given a pointer to an object, it gives access to that very object



95

Passing a pointer

void increment(int* n) {
++(*n);

}

int number{42};
increment(&number);
// number == 43

int count_words(std::string* s)
{

int count{0};
· · · *s · · ·
return count;

}

std::string text{· · ·};
count_words(&text);

• The caller takes the address of the object and passes it to the
function

• The function dereferences the pointer to get access to the object
• Be careful not to dereference a null pointer



96

References

• A variable declared as a reference of a type T is another name (an
alias) for an existing object of type T

56

i
ri

56

j

int i{12};
int j{56};
int& ri{i}; // reference declarator
ri == 12; // true
ri = 34;
ri == 34 && i == 34; // true
ri = j;
ri == 56 && i == 56; // true
int& r; // error



97

References (cont.)

• A reference must be initialized to refer to a valid object
◦ A reference cannot be null

• A reference cannot rebind (be re-associated) to another object
• For a given type T, T& is a compound type, distinct from T
• Dereferencing a pointer gives back a reference to that object

int i{42};
int* p{&i};
int& r{*p}; // i and r are names for the same object



98

Passing by reference

void increment(int& n) {
++n;

}

int number{42};
increment(number);
// number == 43

• There is no difference in the caller compared to pass-by-value
• There is no difference in the body of the function compared to

pass-by-value
• The only visual clue is in the parameter declaration



99

Passing by reference (cont.)

int count_words(std::string& s)
{

int count{0};
· · · s · · · // just use s
return count;

}

int main()
{

std::string text{· · ·};
int const res{count_words(text)};
std::cout << res << '\n';

}

(*) In general it’s unspecified if a reference
occupies storage. Here probably it does and
a pointer (called s′) is passed behind the
scenes.

main

12345res

Nel mezzo

del cammin di

nostra vita...

texts

count_words

012345count

(*)s′



100

const and references

std::string text{· · ·};
std::string& rtext{text}; // ok, can read/modify text via rtext
std::string const& crtext{text}; // ok, crtext is a read-only view of text

std::string const text{· · ·};
std::string& rtext{text}; // error, else could modify text via rtext
std::string const& crtext{text}; // ok, can only read text via crtext

int count_words(std::string const& s)
{

// this function can only read from s
· · ·

}



101

const and pointers

std::string text{· · ·};
std::string* ptext{&text}; // ok, can read/modify name via *ptext
std::string const* cptext{&text}; // ok, can only read text via *cptext

std::string const text{· · ·};
std::string* ptext{&text}; // error, else could modify text via *ptext
std::string const* cptext{&text}; // ok, can only read text via *cptext



102

How to pass arguments to functions

• For input parameters
◦ If the type is primitive, pass by value

int isqrt(int n); // good
int isqrt(int const& n); // bad! pessimization

◦ Otherwise pass by const reference

int count_words(std::string const&);

• For output parameters, prefer to return a value or pass by
non-const reference

int read_from_cin(); // may be more difficult to overload for other types
void read_from_cin(int& n);

• For input-output parameters, pass by non-const reference

void to_lowercase(std::string& s);

• Parameter passing

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#fcall-parameter-passing


103

Returning a reference

• A function can return a reference only if the referenced object
survives the end of the function

◦ Otherwise, in the caller, the reference would refer to an object that
doesn’t exist anymore

• In particular do not return a reference to a function local variable
◦ F.43

// bad
int& add(int a, int b) {

int result{a + b};
return result;

}

// acceptable
int& increment(int& a) {

++a;
return a;

}

• Useful to chain multiple function calls on the same object

std::string& to_lower(std::string& s) { · · · ; return s; }
std::string& trim_right(std::string& s) { · · · ; return s; }
std::string& trim_left(std::string& s) { · · · ; return s; }

std::string s{· · ·};
trim_left(trim_right(tolower(s)));

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f43-never-directly-or-indirectly-return-a-pointer-or-a-reference-to-a-local-object


104

range-for loop

for ( range-declaration : range-expression ) statement
• Simplified form of a for loop, to iterate on all the elements of a

range (sequence), such as a string of characters (ES.71)
• Execute repeatedly statement for all the elements of the range
• range-declaration declares a variable of the same type of an

element of the range
◦ Can (and should) be a (const) reference

• range-expression represents the range to iterate over
• More on ranges later

std::string s{"Hello!"};
for (char& c : s) {

c = std::toupper(c);
}

for (int i : {1, 2, 3, 4, 5}) {
std::cout << i << ' ';

}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es71-prefer-a-range-for-statement-to-a-for-statement-when-there-is-a-choice


105

auto

Let the compiler deduce the type of a variable from the initializer,
i.e. from the expression used to initialize the object

auto z; // error, no initializer
auto i = 0; // int
auto const f = 0.F; // float const
auto r = i + f; // float
auto s = std::string{"hello"}; // std::string
auto& rs = s; // std::string&
auto const& cri = i; // int const&
auto j = rs; // std::string
auto& g = f; // float const&
auto p = &i; // int*
auto q = p; // int*
auto* t = p; // int*

• auto never deduces a reference
• auto preserves constness of references
• Personal preference to use = instead of {} when initializing an

auto variable
◦ Both auto i{0} and auto i = 0; are fine



106

auto/trailing return type

• When the return type of a function is auto the compiler will
deduce it from the return statement(s)

◦ Only usable in a function definition

auto isqrt(int n) // auto deduced as int
{

int result;
· · ·
return result;

}

• If there are multiple return statements their expressions must
have the same type

• Trailing return type

int foo(· · ·);
auto foo(· · ·) -> int; // equivalent



107

Enumerations

• An enumeration is a distinct type with named constants, called
enumerators (Enum.2)

enum class Operator { Plus, Minus, Multiplies, Divides };

• When used, an enumerator is specified with the name of the
enumeration followed by the scope-resolution operator (::)

auto op = Operator::Plus; // op is of type Operator

• By default, an enumerator has the value of the previous
enumerator incremented by one and the first enumerator has
value 0

• An enumerator can be given a value explicitly (Enum.8)

enum class Operator { Plus = -2, Minus, Multiplies = 42, Divides };

The values are respectively −2, −1, 42 and 43.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum2-use-enumerations-to-represent-sets-of-related-named-constants
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum8-specify-enumerator-values-only-when-necessary


108

Enumerations (cont.)

• An enumeration has an integral underlying type, by default int
• A different underlying type can be selected (Enum.7)

enum class byte : unsigned char { };

Note that in this case there are no enumerators → a way to
define a new integral type different from the underlying type

• All values of the underlying type are valid values for the
enumeration object

Operator op{55}; // ok

• Conversions to the underlying type need to be explicit

int i{Operator::Plus}; // error
int i{static_cast<int>(Operator::Plus)}; // ok

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum7-specify-the-underlying-type-of-an-enumeration-only-when-necessary


109

Enumerations (cont.)

• There is also a less strict version of an enumeration: the
unscoped enumeration (Enum.3)

enum Operator { Plus, Minus, Multiplies, Divides }; // NB no class

• The symbols of the enumerators are visible in the enclosing scope
◦ i.e. the enumerators are not specified with the name of the

enumeration followed by ::

Operator op{Plus}; // ok, no need to use Operator::

• The conversion to the underlying type is implicit

int i{Plus}; // ok

• Prefer the scoped enumeration

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum3-prefer-class-enums-over-plain-enums


110

The switch statement

The switch statement transfers control to one of multiple
statements, depending on the value of a condition (ES.70)

double compute(char op, double left, double right)
{

double result;

switch (op) {
case '+':

result = left + right;
break;

· · ·
case '/':

result = (right != 0.) ? left / right : 0.;
break;

default:
result = 0.;

}

return result;
}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es70-prefer-a-switch-statement-to-an-if-statement-when-there-is-a-choice


111

The switch statement (cont.)

• The condition is an expression whose evaluation gives an integral
or enumeration value

◦ Cannot switch on strings, for example
• An enumeration plays well with switch statements

double compute(Operator op, double left, double right)
{

switch (op) {
case Operator::Plus: return left + right;
case Operator::Minus: return left - right;
case Operator::Multiplies: return left * right;
case Operator::Divides: return right != 0. ? left / right : 0.;
default: return 0.;

}
}



112

The switch statement (cont.)

• Each statement, possibly compound, is introduced either by a
case label or by a default label

• Each case label specifies a unique integral constant
• Typically each statement is followed by a break statement, to

jump after the switch, otherwise control falls through the next
instruction, even if this is part of a statement introduced by
another label

◦ The compiler typically warns about falling through, but sometimes
it’s ok and the warning can be silenced with the
[[fallthrough]] (ES.78) attribute

• There can be at most one default label, not necessarily at the
end (ES.79)

• The same statement can be introduced by multiple case labels

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es78-dont-rely-on-implicit-fallthrough-in-switch-statements
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es79-use-default-to-handle-common-cases-only


Data abstraction



113

Data abstraction

• The C++ language has a strong focus on building lightweight data
abstractions

◦ The source code can use terminology and notation close to the
problem domain, making it more expressive

◦ There is little (if any) overhead in terms of space or time during
execution

• class and struct are the primary mechanism to define new
compound types on top of fundamental types C.1

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c1-organize-related-data-into-structures-structs-or-classes


114

Data structure
• Let’s introduce a type to represent complex numbers
• We can pass/return Complex objects to/from functions, take

pointers and references, . . .
struct Complex {

double r; // data member (field)
double i;

};

double norm2(Complex c);
Complex sqrt(Complex c);

Complex c{· · ·};
double n{ norm2(c) };
Complex c2{ sqrt(c) };

Complex& cr{c}; // reference
Complex* cp{&c}; // pointer

double norm2(Complex c) {
return c.r * c.r + c.i * c.i;

}

double norm2(Complex const& c) {
return c.r * c.r + c.i * c.i;

}

• A Complex is composed of two
doubles

• The . (dot) operator allows to
access a member of an object of
class type (such as a struct)

c
1.

r
2.

i



115

Operations

It’s possible to define operations on user-defined types

struct Complex {
double r;
double i;

};

bool operator==(Complex const& a, Complex const& b) {
return a.r == b.r && a.i == b.i;

}

Complex operator+(Complex const& a, Complex const& b) {
return Complex{a.r + b.r, a.i + b.i};

}

c2 = c1 // generated by the compiler, if used
c1 == c2
c1 + c2
z = z * z + c
2. * c1
· · ·



116

Operator overloading

• C++ offers the possibility to define the meaning of most of the
operators available for fundamental types when applied to
user-defined types

• Syntactically this is done via the definition of appropriate
functions

• Given an operator @, the function name is called operator@
• Although there are some constraints on the number and types of

the parameters and on the type of the return value, the
overloaded operators are just functions

• The behaviour of the overloaded operator should reproduce the
behaviour of the original one

• Some behaviours cannot be changed, e.g. associativity



117

Exercises

• Define some other operators and functions for Complex
• Write a function to compute the solutions of an equation of the

form ax2 + bx + c = 0, given the three coefficients (Hint: F.21)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-struct-or-tuple


118

More data abstraction

Imagine to change the Complex type to use the polar form

struct Complex {
double rho;
double theta;

};

• As a consequence, all client code has to change

double norm2(Complex const& c) { return c.rho * c.rho; }

• Not all combinations of (ρ, θ) are valid
◦ ρ ≥ 0, θ ∈ [0, 2π)

Complex c{-1, -1}; // valid?
c.rho = -1; // valid?

• We wish we could
◦ have more isolation between client code and implementation
◦ enforce an internal relation (class invariant) between data members



119

Private representation, public interface
• The internal representation of a data structure should be

considered an implementation detail
• The manipulation of objects should happen through a well-defined

function-based interface
• Known as encapsulation C.3 C.9
• Data member variables (also known as fields) are often named in

a special way
◦ _ suffix or m_ prefix

class Complex {
private: // cartesian form
double r_;
double i_;

public:
// associated functions (member functions, also known as methods)

};

Complex c{1., 2.}; // error
auto norm2(Complex const& c) {

return c.r_ * c.r_ + c.i_ * c.i_; // error
}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c3-represent-the-distinction-between-an-interface-and-an-implementation-using-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c9-minimize-exposure-of-members


120

Construction
• A class can have a special function, called constructor, which is

called to initialize the storage of an object when it is created
◦ It should initialize all data members, in order to establish the class

invariant C.40 C.41
• The constructor’s name is the same as the class name
• Data members are initialized in the order of declaration and

should preferably be initialized in the member initialization list
C.47 C.49

class Complex {
private:
double r_;
double i_;

public:
Complex(double x, double y) // no return type

: r_{x}, i_{y} // member initialization list
{ /* nothing else to do */ }
...

};

Complex c{1., 2.}; // or (1., 2.)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c40-define-a-constructor-if-a-class-has-an-invariant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c40-define-a-constructor-if-a-class-has-an-invariant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c47-define-and-initialize-member-variables-in-the-order-of-member-declaration
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c49-prefer-initialization-to-assignment-in-constructors


121

Private representation, public interface (cont.)

• The internal representation of a class should be considered an
implementation detail

• The manipulation of objects should happen through a well-defined
function-based interface

class Complex {
private:
double r_;
double i_;

public:
Complex(double x, double y) : r_{x}, i_{y} {}
double real() { return r_; } // member function (method)
double imag() { return i_; }

};

double norm2(Complex c) {
return c.real() * c.real() + c.imag() * c.imag();

}

• For a class, private is the default and can be omitted



122

Private representation, public interface (cont.)

• Member functions (methods) can of course also mutate an object

class Complex {
public:
void add(Complex const& other) {

r_ += other.r_; // no need to use other.real() (*)
i_ += other.i_;

}
· · ·

};

Complex c{1., 2.};
Complex d{3., 4.};
c.add(d);
c.real(); // 4.

c.add(Complex{3., 4.}); // valid
c.add({3., 4.}); // also valid

• (*) Control of access to the private part is per class, not per
object



123

Private representation, public interface (cont.)

• Member functions that don’t modify the object should be
declared const

class Complex {
double r_;
double i_;

public:
Complex(double x, double y) : r_{x}, i_{y} {}
auto real() const // cannot modify this object
{ return r_; }
auto add(Complex const& other) // can modify this object
{ r_ += · · ·; }

};

Complex c{1.,2.};
c.real(); // ok
c.add({3.,4.}); // ok
Complex const cc{1.,2.};
cc.real(); // ok
cc.add({3.,4.}); // error



124

Private representation, public interface (cont.)

• It’s not rare to have functions with the same name, but in two
different forms: one that reads and one that modifies the internal
state

◦ Example of function overloading

class Complex {
public:
double real() const { return r_; }
void real(double d) { r_ = d; }
· · ·

};

Complex c{1.,2.};
c.real(0.);
c.real(); // return 0.

Complex const c{1.,2.};
c.real(0.); // error
c.real(); // ok

• Alternatively, methods can be prefixed with get_/set_
◦ e.g. double get_real();, void set_real(double);



125

Member vs free function

class Complex {
public:
double norm2() const { // member function

return r_ * r_ + i_ * i_;
}
· · ·

};

double norm2(Complex const& c) { // free function
return c.real() * c.real() + c.imag() * c.imag();

}

Complex c{· · ·};
c.norm2(); // call the member function
norm2(c); // call the free function

• The public part of a class should ideally provide a safe, efficient
and complete interface, yet minimal

• Prefer a free function, if possible C.4
◦ Extend the functionality of a class without modifying existing code

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c4-make-a-function-a-member-only-if-it-needs-direct-access-to-the-representation-of-a-class


126

std::string (cont.)

• A user-defined type to represent a sequence of characters
• Provided by the C++ Standard Library
• Provides many member functions

◦ Construction
◦ Capacity (e.g. size(), empty())
◦ Assignment (e.g. =, assign())
◦ Comparison (==, !=, <, >, <=, >=)
◦ Access to a character (e.g. [], back(), front())
◦ Insertion/removal (e.g. insert(), append(), erase())
◦ Search (e.g. find())
◦ . . .



127

Construction (cont.)

• A class can have multiple constructors

class Complex {
double r_;
double i_;

public:
Complex(double x, double y) : r_{x}, i_{y} {}
Complex(double x) : r_{x}, i_{0.} {}
Complex() : r_{0.}, i_{0.} {} // default constructor
· · ·

};

Complex c1{1., 2.};
Complex c2{1.}; // meaning {1., 0.}
Complex c3; // or {}, meaning {0., 0.}; () cannot be used here
Complex cf(); // this is a function declaration!

• The default constructor (i.e. the constructor without parameters)
can be automatically generated by the compiler, but only if there
are no other constructors



128

Construction (cont.)

• A constructor can delegate the construction to another, usually
more generic, constructor C.51

class Complex {
double r_;
double i_;

public:
Complex(double x, double y) : r_{x}, i_{y} {}
Complex(double x) : Complex{x, 0.} {} // delegating constructor
Complex() : Complex{0., 0.} {} // delegating constructor
· · ·

};

Complex c1{1., 2.};
Complex c2{1.}; // meaning {1., 0.}
Complex c3; // meaning {0., 0.}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class


129

Construction (cont.)

• A data member can be given a default initializer, which is used
if the member is not explicitly initialized in the called constructor

class Complex {
double r_{0.};
double i_{0.};

public:
Complex(double x, double y) : r_{x}, i_{y} {}
Complex(double x) : r_{x} {} // i_ initialized with 0
Complex() = default; // r_ and i_ initialized with 0
· · ·

};

Complex c1{1., 2.};
Complex c2{1.}; // meaning {1., 0.}
Complex c3; // meaning {0., 0.}

• = default tells the compiler to generate the default
implementation for a special member function (such as the
default constructor) C.45 C.80

◦ Do not use {}

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c45-dont-define-a-default-constructor-that-only-initializes-data-members-use-in-class-member-initializers-instead
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c80-use-default-if-you-have-to-be-explicit-about-using-the-default-semantics


130

Construction (cont.)

• For any function, a parameter can be given a default value, in
case the corresponding argument is omitted

• Arguments can be omitted starting from the right
• Default function arguments can be used also for a constructor

class Complex {
double r_;
double i_;

public:
Complex(double x = 0., double y = 0.) : r_{x}, i_{y} {}
· · ·

};

Complex c1{1., 2.};
Complex c2{1.}; // meaning {1., 0.}
Complex c3; // meaning {0., 0.}



131

explicit constructor

class Complex {
· · ·
Complex(double x = 0., double y = 0.) : r_{x}, i_{y} {}

};

double norm2(Complex const& c) { · · · }

norm2(1.); // callable with a double (-> Complex)
norm2(1); // callable with an int (-> double -> Complex)
c + 3; // call operator+ with two Complex
3 + c; // call operator+ with two Complex, only if free function

• The (one-parameter) constructor is used for the conversion
• An explicit constructor prevents the implicit conversion

class Complex {
· · ·
explicit Complex(double x = 0., double y = 0.) · · ·

};

norm2(1.); // error
norm2(Complex{1.}); // ok



132

explicit constructor (cont.)

• An explicit constructor prevents also the implicit construction
of an object from a list of arguments between braces

◦ e.g. in a function call or in a return statement

class Complex {
· · ·
Complex(double x, double y) · · ·

};

Complex operator+(· · ·)
{
· · ·
return {r, i}; // ok

}

class Complex {
· · ·
explicit Complex(double x, double y) · · ·

};

Complex operator+(· · ·)
{
· · ·
// return {r, i}; // error
return Complex{r, i}; // ok

}

• Better start with explicit constructors, especially for the
constructor callable with one argument, and relax the constraint
later C.46

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit


133

Pointers and data structures

• address-of operator: &
◦ Given an object it returns its address in memory

• dereference operator: *
◦ Given a pointer to an object it returns a reference to that object

• structure dereference operator: ->
◦ Given a pointer to an object of class/struct type, it returns a

reference to a member of that object

struct S {
int n;
void f();

};

S q{· · ·};
S* p = &q;
p->n; // equivalent to (*p).n
p->f(); // equivalent to (*p).f()



134

The this pointer

Within the body of a member function of a class T, the keyword
this
• is a pointer of type T* (or T const* if the method is const)
• points to the object for which the method was called

struct Foo {
void bar() {

... this ...;
}

};

Foo alfa;
Foo beta;
alfa.bar(); // inside bar, this is &alfa
beta.bar(); // inside bar, this is &beta



135

operator@ in terms of operator@=

• Typically, a symmetric operator@ (e.g. operator+) is
implemented in terms of a member operator@= (e.g.
operator+=)

Complex operator+(Complex const& lhs, Complex const& rhs)
{

Complex result{lhs}; // create the result as a copy of lhs
return result += rhs; // add rhs to the result and return it

}

• Typically, operator@= returns a reference to the object being
operated on

class Complex {
· · ·
Complex& operator+=(Complex const& rhs) {

r_ += rhs.r_;
i_ += rhs.i_;
return *this; // *this means self

}
};



136

Example: rational numbers

• Let’s implement a class to represent rational numbers
• The representation is with two integers, such that

◦ The fraction is irreducible, i.e. their GCD (Greatest Common
Denominator) is 1

◦ If the number is negative the sign is kept in the numerator
◦ The denominator is different from 0



137

Example: rational numbers (cont.)

class Rational
{

int n_;
int d_;

public:
Rational(int num = 0, int den = 1) : n_{num}, d_{den}
{

if (d_ == 0) {
// construction must fail

}
// reduce
auto const g{ std::gcd(n_, d_) }; // in <numeric>
n_ /= g;
d_ /= g;
// fix sign
if (d_ < 0) {

n_ = -n_;
d_ = -d_;

}
}
· · ·

};



138

Class invariant

• A class invariant is a relation between the data members of a
class that constrains the values that such members can assume

◦ It defines what is a valid state for an object of that class
◦ It must always hold for an object of that class

• The invariant is established by the constructor
• The invariant is preserved by public methods

◦ The invariant holds when the function is entered =⇒ the
implementation can make assumptions

◦ The invariant may be violated during the execution of the function
◦ The invariant is re-established before exiting the function

• C.2

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently


139

assert

Check that a certain boolean expression is satisfied at run time
• for example, a class invariant at the end of a constructor or a

condition at the beginning of a function (a pre-condition)

#include <cassert>

class Rational {
· · ·
Rational(int num = 0, int den = 1) : n{num}, d{den} {
· · ·
assert(std::gcd(n, d) == 1 && d > 0);

}
Rational& operator/=(int n) {

assert(n != 0);
· · ·

}
};

bool operator==(Rational const& l, Rational const& r)
{

assert(std::gcd(l.num(), l.den()) == 1 && std::gcd(r.num(), r.den()) == 1);
return l.num() == r.num() && l.den() == r.den();

}



140

assert (cont.)

• If the asserted condition is not satisfied, it means that the state
of the program does not conform to the expectations of the
programmer, i.e. to the design

• The state may even be corrupted → it’s probably wiser to
terminate the program as soon as possible to avoid causing
damage

• Very useful to identify logical errors (i.e. bugs)
◦ Be generous with the number of asserts in your code

• Can be disabled for performance reasons (g++ -DNDEBUG · · ·)
◦ Avoid side effects in asserts (e.g. assignments or calls to

non-const methods), because they would disappear from the
executable



141

assert (cont.)

• assert (but also Doctest’s CHECK) is a preprocessor macro
• Macros obey syntactic rules that are different from those of C++

proper

assert(Rational{1,2} == Rational{2,4}); // error (*)
assert(Rational(1,2) == Rational(2,4)); // ok
assert((Rational{1,2} == Rational{2,4})); // ok

* macro "assert" passed 3 arguments, but takes just 1
• Macros expand to arbitrary text, which is then passed to the real

C++ compiler
• A bit more about the preprocessor later in the course



142

Exceptions

• Exceptions provide a general mechanism to:
◦ notify the occurrence of an error in the program execution,

typically when a function is not able to accomplish its task, i.e. to
satisfy its post-condition

− using a throw expression
◦ transfer control to a handler defined in a previous function in the

call chain, where the exception can be managed
− using a try/catch statement

• Exceptions help separate application logic from error management
• A typical use is in constructors and operators, that have a fixed

function signature
• Exceptions cannot be ignored

◦ If a handler is not found the program is terminated



143

Exceptions (cont.)

struct E {};

auto function3() {
· · · // this part is executed
throw E{};
· · · // this part is not executed

}

auto function2() {
· · · // this part is executed
function3();
· · · // this part is not executed

}

auto function1() {
try {
· · · // this part is executed
function2();
· · · // this part is not executed

} catch (E const& e) {
· · · // use e

}
}

• An exception is an object
• After being raised (thrown), an

exception is propagated up the
stack of function calls until a
suitable catch clause (handler)
is found

• If no suitable handler (i.e. one
compatible with the type of the
exception) is found, the
program is terminated

• Exceptions should be caught by
(const) reference

• During stack unwinding the
stack frames are properly
cleaned up



144

Exceptions in constructors

• An exception is typically raised by a constructor to inform that it
is not able to properly initialize the object C.42

◦ i.e. it’s not able to establish the class invariant
• Let’s apply this to Rational, using the standard-provided

exception std::runtime_error
◦ it can be constructed with a string or a string literal
◦ it provides a what() method to retrieve that string, e.g. in the

handler

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c42-if-a-constructor-cannot-construct-a-valid-object-throw-an-exception


145

Exceptions in constructors (cont.)

class Rational {
· · ·
Rational(int num = 0, int den = 1) : n{num}, d{den} {

if (d == 0) {
throw std::runtime_error{"denominator is zero"}; // in <stdexcept>

}
· · ·

}
};

auto do_computation() {
· · ·
Rational{n,m} // m here happens to be 0
· · ·

}

try {
do_computation();
· · ·

} catch (std::runtime_error const& e) {
// manage the error, e.g. log a message on stdandard error
std::cerr << e.what() << '\n';

}



146

Nested class

• A class can be defined within the definition of another class
◦ in either the public or private section

class Regression {
· · ·
class Result { · · · };
Result fit() const { · · · }

};

Regression reg;
· · ·
Regression::Result result{ reg.fit() }; // or auto result{· · ·}

• The nested class can access the private members of the outer
class



147

Type alias

• A type alias is another name for an existing type

using Length = double;
typedef double Length; // equivalent, old alternative

Length len{1.}; // len is of type double

• A type alias does not introduce a new type

void walk(double d) { · · · }
void walk(Length l) { · · · } // error, redefinition of walk



148

Type alias (cont.)

• Type aliases are often used to declare types within a class

class FitResult { · · · };

class Regression {
· · ·

public:
using Result = FitResult;
Result fit() const { · · · }

};

Regression::Result result{ reg.fit() }; // result is of type FitResult



149

Structured binding

• A structured binding declaration declares multiple variables and
initializes them from values of struct members (and other entities,
following a certain protocol)

struct Point {
double x;
double y;

};

Point p{1.,2.};
auto [a, b] = p;
std::cout << a << ' ' << b; // print 1 2

• The variables can be declared as (const) references to the struct
members

Point p{1.,2.};
auto& [a, b] = p; // a is a ref to p.x, b is a ref to p.y
a = 3.;
b = 4.;
std::cout << p.x << ' ' << p.y; // print 3 4



Templates



150

Class template

• Let’s consider again the Complex class
• What if we want float members?

class Complex {
double r;
double i;

public:
Complex(

double x = double{}
, double y = double{}

) : r{x}, i{y} {}
double real() const { return r; }
double imag() const { return i; }

};

class Complex {
float r;
float i;

public:
Complex(

float x = float{}
, float y = float{}

) : r{x}, i{y} {}
float real() const { return r; }
float imag() const { return i; }

};



151

Class template (cont.)

We can transform Complex into a template, with the floating-point
type a parameter of that template

template<typename FP> // or, template<class FP>
class Complex {

static_assert(std::is_floating_point_v<FP>); // (*)
FP r;
FP i;

public:
Complex(FP x = FP{}, FP y = FP{}) : r{x}, i{y} {}
FP real() const { return r; }
FP imag() const { return i; }

};

Complex c; // error
Complex<double> d; // instantiation of a Complex<double> type
Complex<float> f; // different type than d
Complex e{1.,1.}; // Complex<double> deduced
d + e; // ok
d + f; // possibly error
Complex<int> i; // acceptable?

* compile-time check + type introspection



152

Class template (cont.)

• A class template can be seen as a type generator
• A class template is parameterized by one or more template

parameters (types, but not only)
• A template specialization identifies a template name and a set of

template arguments corresponding to the template parameters
◦ Template arguments can be explictly specified (e.g. following the

template name between angular brackets <>) or deduced based on
constructor arguments

• When a class template specialization is used in a context where a
type is needed, the compiler instantiates a new type

◦ Identical instantiations are merged together
• Only member functions that are actually used are instantiated
• There are ways to constrain the arguments used to instantiate a

template
◦ Notably, C++20 has introduced concepts



153

Function template

double norm2(Complex const& c) { · · · } // not valid any more
norm2(f); // error; f is of type Complex<float>

auto norm2(Complex<float> const& c) {
return c.real() * c.real() + c.imag() * c.imag();

}
norm2(f); // ok
norm2(d); // error; d is of type Complex<double>

auto norm2(Complex<double> const& c) {
return c.real() * c.real() + c.imag() * c.imag();

}
norm2(d); // ok

template<typename FP> // or template<class FP>
auto norm2(Complex<FP> const& c) {

return c.real() * c.real() + c.imag() * c.imag();
}
auto nf = norm2(f); // nf is of type float
auto nd = norm2(d); // nd is of type double



154

Function template (cont.)

template<typename FP>
auto norm2(Complex<FP> const& c)
{ return c.real() * c.real() + c.imag() * c.imag(); }

template<typename C>
auto norm2(C const& c)
{ return c.real() * c.real() + c.imag() * c.imag(); }

norm2(f); // ok
norm2(d); // ok
std::complex<float> g;
norm2(g); // ok!

namespace std {
template<class T>
class complex {
· · ·

public:
T real() const;
T imag() const;

};
}

This shows the basic idea behind
generic programming



155

Function template (cont.)

• A function template can be seen as a function generator
• A function template is parameterized by one or more template

parameters (types, but not only)
• A template specialization identifies a template name and a set of

template arguments corresponding to the template parameters
◦ Template arguments can be explictly specified (e.g. following the

template name between angular brackets <>) or deduced based on
function arguments

• When a function template specialization is used in a context
where a function is needed, the compiler instantiates a new
function

◦ Identical instantiations are merged together
• Only functions that are actually used are instantiated
• There are ways to constrain the arguments used to instantiate a

template
• Usually there is no separate definition of a function template



156

Template argument deduction

• In order to instantiate a template every template argument has to
be known

• Template arguments can be deduced from function call arguments

template<class F> F norm2(Complex<F> const& c) {· · ·}

Complex<float> f;
norm2(f); // no need to specify norm2<float>(f)
norm2<float>(f); // ok, be explicit
norm2<double>(f); // instantiate and call norm2<double>, probably failing

• Sometimes it’s not possible to deduce all template arguments
from function parameters

template<class Number>
Number lexical_cast(std::string const& s) // convert a string to a number
{· · ·}

auto d = lexical_cast<double>("3.14"); // the destination type is needed



157

Template argument deduction (cont.)

• Constructor calls can be used to deduce class template arguments

◦ Constructor Template Argument Deduction (CTAD)

template<class FP> class Complex {· · ·};

Complex d; // error, cannot deduce FP
Complex<double> e; // ok
Complex f{1.}; // ok, Complex<double>
Complex<double> g{1.}; // ok
Complex<float> h{1.}; // ok, 1. -> 1.F

• If CTAD is not available (e.g. in older C++ versions), leverage
function template argument deduction

template<class FP>
auto make_complex(FP r, FP i) {

return Complex<FP>(r, i);
}

auto c = make_complex(1.,2.); // instead of Complex c{1.,2.}



158

Exercises

• Write an operator+ that adds two complex numbers of different
types

• Transform the Rational class into a class template, where the
parameter is the type used to represent numerator and
denominator. Adapt the operators.
Write a program that instantiates the Rational class with
integral types such as int, long int, long long int, short
int. Combine objects of those types using the operators.



159

Non-type template parameters
• A class/function template parameter need not be a type
• A template parameter can be a value, which must be known at

compile time
template<int I> struct C { · · · };
C<2> c2;
C<3> c3; // different type
int n; std::cin >> n;
C<n> c4; // error, n is not a compile-time constant

• The type of the value needs to satisfy certain constraints
• Integral types (e.g. int, char, bool) and enumeration types are

allowed, other structural types (including floating-point types)
since C++20

template<double D> struct F { · · · }; // ok since C++20

• Type and non-type template parameters can be mixed
template<class T, int N> struct array { · · · };
template<class T, T v> struct integral_constant { · · · };



The C++ Standard Library



160

Namespaces

• How can we guarantee that in a program composed of thousands
of files, written by thousands of people, using third-party libraries,
there are no conflicts between identifiers?

• Namespaces are a mechanism to partition the space of names in a
program to prevent such conflicts

// in <vector>
namespace std {

template<class T> vector { · · · };
}

// in <algorithm>
namespace std {

template<class It, class T> find(It first, It last, T const& v) { · · · }
}

• Namespaces can be re-opened, even in other files
◦ But namespace std cannot be re-opened by a user, unless

explicitly allowed by the specification
• Namespaces can be nested



161

Namespaces (cont.)
• A namespace alias gives another name to an existing namespace
namespace ch = std::chrono;

auto t0 = ch::system_clock::now(); // std::chrono::system_clock::now()

• A using declaration makes a namespace symbol visible in the
current scope

using std::string;

string s;

• A using directive makes all the namespace symbols visible in the
current scope

using namespace std;

string s;

• Avoid “using directives”. They are especially bad in the global
scope and in header files



162

Namespaces (cont.)

• It’s good practice to put all entities of a software component into
a namespace

namespace stats {

struct Result { · · · };
class Regression { · · · };

Result fit(Regression const&);

}

• Within a namespace, when using a name declared in that
namespace, there is no need to namespace-qualify it (i.e.
prepending namespace::)



163

The C++ standard library

• The standard library contains components of general use
◦ containers (data structures)
◦ algorithms
◦ strings
◦ input/output
◦ mathematical functions
◦ random numbers
◦ regular expressions
◦ concurrency and parallelism
◦ filesystem
◦ . . .

• The subset containing containers and algorithms is known as STL
(Standard Template Library)

◦ But templates are everywhere



164

Containers of objects

• A program often needs to manage collections of objects
◦ e.g. a string of characters, a dictionary of words, a list of particles,

a matrix, . . .
• A container is an object that contains other objects
• The C++ Standard Library provides a few container classes

◦ implemented as class templates
◦ different characteristics and operations, some common traits



165

std::vector<T>

Dynamic container of elements of type T
• its size can vary at runtime
• layout is contiguous in memory
• container you should use by default
• be careful with initialization: {} vs ()

◦ check if there is a constructor that takes an
std::initializer_list

#include <vector>

std::vector<int> a; // empty vector of ints
std::vector<int> b{2}; // one element, initialized to 2
std::vector<int> c(2); // two elements (!), value-initialized (0 for int)
std::vector<int> d{2,1}; // two elements, initialized to 2 and 1
std::vector<int> e(2,1); // two elements, both initialized to 1

auto f = b; // make a copy, f and b are two distinct objects
f == b; // true



166

std::vector<T> (cont.)

• The size method gives the number of elements in the vector
• The empty method tells if the vector is empty
• operator[] gives access to the i th element

std::vector<int> vec{4,2,7};

assert(!vec.empty());
std::cout << vec.size(); // print 3
vec[1] = 5; // vec is now {4,5,7}
std::cout << vec[1]; // print 5

Counting starts from 0!
vec[0]; // first element
vec[1]; // second element
vec[vec.size()-1]; // vec[2], third and last element
vec[vec.size()]; // vec[3], element doesn't exist, undefined behaviour!



167

std::vector<T> (cont.)

• The push_back method adds an element at the end of the vector

vec.push_back(-2); // vec is now {4,5,7,-2}
vec.push_back(0); // vec is now {4,5,7,-2,0}
std::cout << vec.size(); // print 5

// fill a vector with numbers read from standard input
std::vector<double> v;
for (double d; std::cin >> d; ) {

v.push_back(d);
}



168

Iterators and ranges

• An iterator is an object that indicates a position within a range
◦ A container, such as a vector, is a range

• In fact, a pair of iterators [first, last) represents a range
◦ the range is half-open

− first points to the first element of the range
− last points to one past the last element of the range

◦ first == last means the range is empty
123 456 789

first last

• Ranges are typically obtained from containers calling methods
begin and end

std::vector<int> v {· · ·};
auto first = v.begin(); // std::vector<int>::iterator
auto last = v.end(); // std::vector<int>::iterator



169

Operations on iterators

• Syntactically, operations on iterators are inspired by pointers
• There is a minimal set of operations supported by an iterator it
• *it gives access to the element pointed to by it

std::vector<int> v {1,2,3};
auto it = v.begin();
std::cout << *it; // print 1
*it = 4; // v is now {4,2,3}

auto it = v.end();

*it; // undefined behaviour, it doesn't point inside the range



170

Operations on iterators (cont.)

• it->member gives access to a member (data or function) of the
element pointed to by it

◦ equivalent to (*it).member , note the parenthesis

std::vector<Point> v {Point{1,2}, Point{3,4}};
auto it = v.begin();
std::cout << (*it).x; // print 1
std::cout << it->x; // equivalent

struct Point {
double x;
double y;

};

std::vector<std::string> v {"hello", "world"};
auto itv = v.begin(); // itv points to the first string in the vector
auto its = itv->begin(); // its points to the first character

// of the first string ('h');
// a string is a container of characters



171

Operations on iterators (cont.)

• ++it advances it so that it points to the next element in the
range

std::vector<int> v {123, 456, 789};
auto first = v.begin();
auto last = v.end();
std::cout << *first; // print 123

123 456 789

first last

++first;
std::cout << *first; // print 456

123 456 789

first last



172

Operations on iterators (cont.)

• it1 == it2 (it1 != it2) tells if it1 and it2 point to the
same element (different elements) of the range

++first; ++first;
first == last; // true

123 456 789

first last

• Other operations (--it, it + n, it += n, it < it2, . . . ) may
be supported, depending on the underlying range

◦ vector iterators support them all



173

Example: add all elements of a vector
(Iteration on a container)

std::vector<int> c { · · · };

auto sum = 0;
for (int i {0}, n = c.size(); i != n; ++i) {

auto const& v = c[i];
sum += v;

}

auto sum = 0;
for (auto it = c.begin(), last = c.end(); it != last; ++it) {

auto const& v = *it;
sum += v;

}

auto sum = 0;
for (auto const& v : c) { // translates to the loop with iterators

sum += v;
}

auto sum = std::accumulate(c.begin(), c.end(), 0); // algorithm



174

std::vector<T> (cont.)
• The erase method removes the element pointed to by the

iterator passed as argument (must not be end())

// remove the central element
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it); // size decreased by 1

• The erase method can remove a range, passing two iterators

// erase the 2nd half of the vector
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it, v.end()); // size ~halved here

• In general, iterators pointing to erased elements are not valid
anymore

◦ For a vector, iterators pointing to elements following the erased
one are also invalidated, including the end iterator

v.erase(it);
*it; // undefined behaviour (UB)
++it; // UB, be careful in loops
it = · · ·; // ok



175

std::vector<T> (cont.)

• The insert method inserts an element before the position
indicated by an iterator

// insert the value 42 in the middle of the vector
auto it = v.begin() + v.size() / 2;
v.insert(it, 42); // size increased by 1

• Other overloads of insert are available, see reference
• Existing iterators pointing to elements after the insertion position

are invalidated
◦ If a memory reallocation occurs (see later), all existing iterators

pointing into the vector are invalidated



176

std::array<T, N>

Container of N elements of type T
• N known at compile time
• layout is contiguous in memory

#include <array>

// 2 ints, uninitialized
std::array<int,2> a;

// 2 ints, initialized to 1 and 2
std::array<int,2> b{1,2};

// 2 ints, value-initialized (0 for int)
std::array<int,2> c{};

// 2 ints, initialized to 1 and 0
std::array<int,2> d{1};

// make a copy
auto e = b; // std::array<int,2>
assert(e == b);

b
1

2

e
1

2



177

std::array<T, N> (cont.)

• The size method gives the number of elements in the array
(which corresponds to N)

• operator[] gives access to the i th element

int const M {4};
std::array<int, M> arr{1,2}; // {1,2,0,0}

std::cout << arr.size(); // print 4
arr[1] = 3; // arr is now {1,3,0,0}
std::cout << arr[1]; // print 3

• begin, end, empty, front, back methods
• No push_back or insert, the size is fixed.



178

Type aliases (cont.)

• Type aliases can be templates

// array of 3 T’s
template<class T> using Array3 = std::array<T, 3>;

Array3<double> a; // std::array<double, 3>

// array of N bytes
template<int N> using ArrayOfBytes = std::array<std::byte, N>;

ArrayOfBytes<16> b; // std::array<std::byte, 16>



179

Algorithms
• Generic functions that operate on ranges of objects
• Implemented as function templates
• Sum all the elements of a container cont of ints
int sum {0};
for (auto it = cont.begin(), last = cont.end(); it != last; ++it) {

sum += *it;
}

auto sum = std::accumulate(cont.begin(), cont.end(), 0); // better

• Find an element equal to val in a container cont

auto it = cont.begin();
auto const last = cont.end();
for (; it != last; ++it) {

if (*it == val) {
break;

}
}

auto it = std::find(cont.begin(), cont.end(), val); // better



180

Generic programming

• A style of programming in which algorithms are written in terms
of concepts

template<class InputIterator, class Tp>
Tp accumulate(InputIterator first, InputIterator last, Tp init)
{

for (; first != last; ++first)
init = init + *first;

return init;
}

template <class Iterator, class T>
Iterator find(Iterator first, Iterator last, const T& value)
{

for (; first != last; ++first)
if (*first == value) break;

return first;
}



181

Concepts
• A concept is a set of requirements that a type needs to satisfy at

compile time
◦ e.g. supported expressions, nested typedefs, memory layout, . . .

• Concepts constrain the types that can be used as template
arguments

◦ Implicit until C++20, based on how those types are used in a
class/function template definition

◦ C++20 introduces a specific syntax and a set of generally useful
concepts (not further discussed)

template<class T>
concept Incrementable = requires(T t) { ++t; };

template<Incrementable T>
auto advance(T& t) { ++t; }

int i {42};
advance(i); // ok, int is a model of Incrementable

struct S {};
S s;
advance(s); // error, S is not a model of Incrementable



182

Hierarchy of iterators

// InputIterator (find)
while (first != last && !(*first == value)) ++first;

// OutputIterator (generate_n)
for (; n > 0; ++first, --n) *first = gen();

// ForwardIterator (generate)
for (; first != last; ++first) *first = gen();

// ForwardIterator (adjacent_find)
auto i = first;
while (++i != last) · · ·

// BidirectionalIterator (reverse)
if (first == --last) break;

// RandomAccessIterator (reverse)
for (; first < --last; ++first) · · ·

InputIterator
read, increment, comparison

OutputIterator
write, increment

ForwardIterator
multiple passes

BidirectionalIterator
decrement

RandomAccessIterator
random access



183

Examples of algorithms

Non-modifying all_of any_of for_each count count_if
mismatch equal find find_if adjacent_find
search ...

Modifying copy copy_if fill generate transform
remove replace swap reverse rotate shuffle
sample unique ...

Partitioning partition stable_partition ...
Sorting sort partial_sort nth_element ...

Set includes set_union set_intersection ...
Min/Max min max minmax clamp ...

Comparison equal lexicographical_compare ...
Numeric iota accumulate inner_product partial_sum

adjacent_difference reduce ...
. . .



184

Algorithms in action

std::array a {23, 54, 41, 0, 18};

// sort the array in ascending order
std::sort(std::begin(a), std::end(a));

// sum up the array elements, initializing the sum to 0
auto s = std::accumulate(std::begin(a), std::end(a), 0);

// append the partial sums of the array elements into a vector
std::vector<int> v;
std::partial_sum(std::begin(a), std::end(a), std::back_inserter(v));

auto p = std::inner_product(std::begin(a), std::end(a), std::begin(v), 0);

// find the first element with value 42, if existing
auto it = std::find(std::begin(v), std::end(v), 42);



185

Why using standard algorithms

• They are correct
• They express intent more clearly than a raw for/while loop
• They are efficient

◦ They give computational complexity guarantees
◦ How fast do they run? how much additional memory do they

need?
• They enable easy access to parallelism

#include <execution>

std::vector<int> v {· · ·};

std::sort(std::execution::par, v.begin(), v.end());

auto it = std::find(std::execution::par, v.begin(), v.end(), 123);



186

Computational complexity

• A measure of how many resources a computation will need for a
given input size

◦ Typically the resource is time but can be space (memory)
◦ For example: how many comparisons does the sort algorithm do

for a range of one million elements?
• Of typical interest are the average case and the worst case
• The complexity is a function f of the input size n, but usually

only the asymptotic behaviour is given
◦ Big-O notation
◦ O(g(n)) means that, for a large n, f (n) ≤ cg(n), for some

constant c
◦ Note how constant factors don’t matter in big-O notation

• For example
◦ std::vector<T>::push_back is (amortized) O(1)
◦ std::binary_search is O(log n)
◦ std::find is O(n)
◦ std::sort is O(n log n)



187

Computational complexity (cont.)

Cmglee / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)



188

Functions

• A function associates a sequence of statements (the function
body) with a name and a list of zero or more parameters

• A function may return a value
• Multiple functions can have the same name → overloading

◦ different parameter lists
• A function returning a bool is called a predicate

bool less(int n, int m) { return n < m; }



189

Algorithms and functions

template <class Iterator, class T>
Iterator find(Iterator first, Iterator last, const T& value)
{

for (; first != last; ++first)
if (*first == value)

break;
return first;

}

auto it = find(v.begin(), v.end(), 42);

template <class Iterator, class Predicate>
Iterator find_if(Iterator first, Iterator last, Predicate pred)
{

for (; first != last; ++first)
if (pred(*first)) // unary predicate

break;
return first;

}

bool lt42(int n) { return n < 42; }

auto it = find_if(v.begin(), v.end(), lt42);
auto it = find_if(v.begin(), v.end(), [](int n) { return n < 42; } );

Some algorithms are customizable passing a function



190

Function objects

A mechanism to define something-callable-like-a-function
• A class with an operator()

struct LessThan42 {

auto lt42(int n)
{

return n < 42;
}

LessThan42 lt42{};
// or: auto lt42 = LessThan42{};

auto b = lt42(32); // true

std::vector v {61,32,51};
auto it = std::find_if(

v.begin(), v.end(),
lt42

); // *it == 32

struct LessThan42 {
auto operator()(int n) const
{

return n < 42;
}

};

LessThan42 lt42{};
// or: auto lt42 = LessThan42{};
auto b = lt42(32); // true

std::vector v {61,32,51};
auto it = std::find_if(

v.begin(), v.end(),
lt42 // or directly: LessThan42{}

); // *it == 32



191

Function objects (cont.)

A function object, being the instance of a class, can have state

class LessThan {
int m_;

public:
explicit LessThan(int m) : m_{m} {}
auto operator()(int n) const {

return n < m_;
}

};

LessThan lt42 {42};
auto b1 = lt42(32); // true
// or: auto b1 = LessThan{42}(32);
LessThan lt24 {24};
auto b2 = lt24(32); // false
// or: auto b2 = LessThan{24}(32);

std::vector v {61,32,51};
auto i1 = std::find_if(..., lt42); // *i1 == 32
// or: auto i1 = std::find_if(..., LessThan{42});
auto i2 = std::find_if(..., lt24); // i2 == v.end(), i.e. not found
// or: auto i2 = std::find_if(..., LessThan{24});



192

Function objects (cont.)

An example from the standard library

#include <random>

// random bit generator
std::default_random_engine eng;

// generate N 32-bit unsigned integer numbers
for (int n = 0; n != N; ++n) {

std::cout << eng() << '\n';
}

// generate N floats distributed normally (mean: 0., stddev: 1.)
std::normal_distribution<float> dist;
for (int n = 0; n != N; ++n) {

std::cout << dist(eng) << '\n';
}

// generate N ints distributed uniformly between 1 and 6 included
std::uniform_int_distribution<> roll_dice(1, 6);
for (int n = 0; n != N; ++n) {

std::cout << roll_dice(eng) << '\n';
}



193

Lambda expression
• A concise way to create an unnamed function object
• Useful to pass actions/callbacks to algorithms, threads,

frameworks, . . .

struct LessThan42 {
auto operator()(int n)
{

return n < 42;
}

};

class LessThan {
int m_;

public:
explicit LessThan(int m)

: m_{m} {}
auto operator()(int n) const
{

return n < m_;
}

};

std::find_if(..., LessThan42{});

std::find_if(..., [](int n) {
return n < 42;

}
);

std::find_if(..., LessThan{m});

auto m = · · ·;
std::find_if(..., [=](int n) {

return n < m;
}

);
std::find_if(..., [m = · · ·](int n) {

return n < m;
}

);



194

Lambda closure
The evaluation of a lambda expression produces an unnamed
function object (a closure)
• The operator() corresponds to the code of the body of the

lambda expression
• The data members are the captured local variables

auto v = 42;

auto lt = [v](int n)
{ return n < v; }

auto r = lt(5); // true

class SomeUniqueName {
int v;

public:
explicit SomeUniqueName(int v)

: v{v} {}
auto operator()(int n) const
{ return n < v; }

};

auto v = 42;
auto lt = SomeUniqueName{v};
auto r = lt(5); // true

• Two lambda expressions produce objects of different types, even if
they are identical



195

Lambda capture

• Automatic variables used in the body of the lambda need to be
captured

◦ [] capture nothing
◦ [=] capture all (what is needed) by value
◦ [k] capture k by value
◦ [&] capture all (what is needed) by reference
◦ [&k] capture k by reference
◦ [=, &k] capture all by value but k by reference
◦ [&, k] capture all by reference but k by value

auto v = 3;
auto l = [&v] {};

class SomeUniqueName {
int& v;

public:
explicit SomeUniqueName(int& v)

: v{v} {}
· · ·

};

auto l = SomeUniqueName{v};

• Global variables are available without being captured



196

Lambda explicit return type

• The return type of the call operator can be explicity specified

[=](int n) -> bool { return n < v; }

becomes
class SomeUniqueName {
· · ·
bool operator()(int n) const
{ return n < v; }

};



197

Generic lambda

• If a parameter of the lambda expression is auto, the lambda
expression is generic

• The call operator is a template

[](auto n) { · · · }

becomes
class SomeUniqueName {
· · ·
template<typename T>
auto operator()(T n) const { · · · }

};



198

Lambda: const and mutable

• By default the call to a lambda is const
◦ Variables captured by value are not modifiable

• A lambda can be declared mutable
◦ The parameter list is mandatory

• If present, the explicit return type goes after mutable

[i]() mutable -> bool {· · · ++i · · ·} class SomeUniqueName {
int i;
· · ·
bool operator()() {· · · ++i · · ·}

};

• Variables captured by reference can be modified

int v = 3;
[&v] { ++v; } (); // NB the lamdba is immediately invoked
assert(v == 4);

• There is no immediate way to capture by const&, but one can
use std::as_const



199

Lambda: dangling reference

• Be careful not to have dangling references in a closure
• It’s similar to a function returning a reference to a local variable

auto make_lambda() // auto here is unavoidable
{

int v = 3;
return [&] { return v; }; // return a closure

}

auto l = make_lambda();
auto d = l(); // the captured variable is dangling here

• Capture by reference only if the lambda closure doesn’t survive
the current scope



200

Exercises

• Given a vector of ints, compute the product of the numbers
(Hint: use std::accumulate)

• Generate N numbers, using one of the available random number
distributions, and insert them in a std::vector (Hint: use
std::generate_n)

• Compute the mean and the standard deviation of the generated
numbers (Hint: use std::accumulate)

Don’t forget the tests!

https://en.cppreference.com/w/cpp/named_req/RandomNumberDistribution
https://en.cppreference.com/w/cpp/named_req/RandomNumberDistribution


201

std::function

• Type-erased wrapper that can store and invoke any callable entity
with a certain signature

◦ function, function object, lambda, member function

#include <functional>

using Function = std::function<int(int,int)>; // signature

Function f1 { std::plus<int>{} };
Function f2 { [](int a, int b) { return a * b; } };
Function f3 { [](auto a, auto b) { return std::gcd(a,b); } };

• Some space and time overhead, so use only if a template
parameter is not satisfactory

std::vector<Function> functions { f1, f2, f3 };

for (auto& f : functions) {
std::cout << f(121, 42) << '\n'; // 163 5082 1

}



Compilation model



202

The C++ compilation model
This is the current model; C++20 has introduced modules (not
further discussed)

Source file
(hello.cpp)

Executable
binary file

(a.out)

Compilation
(g++)

Header
(iostream)

Header
(string)

#include

#include

Translation Unit

• The production of the translation unit is the first step of the
overall compilation process

• It is accomplished by running the preprocessor on a source file
• To stop the compilation process after the preprocessing:

◦ g++ -E hello.cpp



203

The C++ compilation model (cont.)

• A typical C++ program is composed of many files, i.e. there are
many translation units

Translation
Units Compiler Executable+

• How to distribute source code over multiple files?
• How to expose functionality from one translation unit so that it

can be used in another?
• Physical design



204

The C++ compilation model (cont.)
• The overall process to translate C++ source code to the final

binary executable consists of multiple stages

Translation
Units Compiler Object

Files Linker Executable+ + +

Standard
Library

Other
Libraries

• To produce object files without linking:
◦ g++ -c hello.cpp

• To keep all the intermediate files generated during the
compilation process:

◦ g++ -save-temps hello.cpp



205

Definition vs Declaration

• A definition is a declaration that fully defines an entity
• Examples:

bool less_than(int a, int b) { // function definition
return a < b;

}

class Sample { // class definition
public:
void add(double x) // member function definition
{

++N_;
sum_x_ += x;
· · ·

}
· · ·

};



206

Definition vs Declaration (cont.)

• A declaration that is not a definition just introduces the name
(and, when applicable, the type) of the entity

• Examples:

bool less_than(int a, int b); // function declaration (prototype)

class Sample; // class (forward) declaration

class Sample { // class definition
public:
void add(double x); // member function declaration
· · ·

};



207

One-Definition Rule (ODR)

• An entity can be defined only once in each translation unit
• More generally, an entity can be defined only once in the whole

program, with exceptions
• Some entities can be defined in multiple translation units,

provided the definitions are identical (token-by-token in the
source code)

◦ Class definitions
◦ inline functions and variables
◦ Class and function templates
◦ . . .

• To guarantee that definitions are identical in all translation units
they typically appear in header files, which are then #included
where needed

• The compiler may not be able to diagnose violations of the ODR
◦ The generated executable may behave incorrectly



208

Definition vs Declaration during compilation and linking

• During the compilation step:
◦ Calling a function requires the previous declaration of that function
◦ The declaration of a function requires the previous declaration of

the types involved
◦ Creating and manipulating an object require the definition of the

corresponding type (the type has to be complete)
• During the linking step:

◦ Everything has to be properly defined



209

Header and source files

• Header files are the primary mechanism to guarantee that
declarations and definitions are identical in all translation units

◦ Because they are #included in other header and source files
where those declarations and definitions are needed

• For a given software component, a typical situation foresees
◦ One header file containing free function declarations, class

definitions with member function declarations, template definitions

− The contents of the header file represent the interface of the
component

◦ One source file containing definitions of free and member
functions and of any other entity needed for the implementation

− Suggestion the source file #includes the corresponding header
file as the first #include

◦ One file with the unit tests
◦ But there is much flexibility in how to distribute definitions

between header and source files, especially for functions



210

Header and source files (cont.)

• A function defined in a header file needs to be declared inline

inline double norm2(Complex const& c)
{

return c.real() * c.real() + c.imag() * c.imag();
}

• inline informs the compiler/linker that all the definitions of the
function, even if they are in multiple translation units, are equal

◦ NB the inline keyword is not (any more) an optimization hint to
the compiler

• Function templates and member functions (methods) defined
inside the class are implicitly inline



211

Member functions defined outside the class

• A method must be declared inside the class, but can be just
declared inside the class, i.e. not also defined

class Sample {
· · ·
void add(double);

};

• When defining a method outside the class, the method name
must be prefixed with the class name followed by the scope
operator ::, i.e. class-name::method-name

void Sample::add(double x) {
++N_;
sum_x_ += x;
· · ·

}



212

Member functions defined outside the class (cont.)

• The method can be defined in the same file (normally a header
file) or even in another file (normally the corresponding source
file)

• As for free functions, if the definition is in a header file, the
method should be declared inline

inline void Sample::add(double d) {
++N_;
sum_x_ += x;
· · ·

}



213

Include guards

• A header (file) may be included, directly or indirectly, multiple
times in the same translation unit

#include "result.hpp"
#include "sample.hpp" // sample.hpp already includes result.hpp

• Multiple definitions of the same entity would be available in the
same translation unit, which is illegal

• Placing an include guard at the beginning of each header file
prevents multiple inclusions in the same translation unit

// file result.hpp
#ifndef RESULT_HPP
#define RESULT_HPP
· · ·
// classes, functions, templates, ...
· · ·
#endif



214

To inline or not to inline?

• Pros:
◦ A compiler can optimize more because it sees more code → faster

execution
− Definitions of inline functions contained in included header files

become part of the translation unit
◦ Header-only libraries (i.e. everything is in one or more header files)

are easier to distribute (e.g. doctest)
• Cons:

◦ More physical coupling between software components
− Visibility of implementation details
− Every time a header file changes all the including files need to be

recompiled → longer compilation times
◦ The code of the inlined functions may be included many times in

the final binary, making it larger and causing inefficient use of the
memory system → slower execution



215

Build systems

• When a project includes more than a few files, keeping track of
compilation dependencies between them becomes difficult

• A project may foresee multiple artifacts: executables, libraries (i.e.
collection of object files), tests, . . .

• A project may depend on other projects, e.g. other libraries
• Usually multiple variants of a project are needed: one for debug,

one for testing with code coverage, one for release, one for
measuring performance (profiling), . . .

◦ Each variant foresees different compilation flags
• . . .
• In practice, all the above cannot be done manually and an

automatic system is required
• Such a system is usually called build system
• Many build systems exist. We’ll use CMake

https://cmake.org


216

CMake

• CMake is an open-source, cross-platform family of tools designed
to build, test and package software

• Most used tool to build C++ projects
• Build targets, dependencies, options, . . . are expressed

declaratively in a file called CMakeLists.txt

cmake_minimum_required(VERSION 3.16)
project(mandelbrot_sfml VERSION 0.1.0)

find_package(SFML 2.5 COMPONENTS graphics REQUIRED)

string(APPEND CMAKE_CXX_FLAGS " -Wall -Wextra")

add_executable(mandelbrot_sfml main.cpp)
target_link_libraries(mandelbrot_sfml PRIVATE sfml-graphics)

• See code/mandelbrot_cmake for a basic example

https://github.com/Programmazione-per-la-Fisica/pf2023/tree/main/code/mandelbrot_cmake


Static data and functions



217

Non-local objects

• Objects can be created outside a function block

#include <random>

std::default_random_engine eng;

auto seed_rand(int s) { eng.seed(s); }
auto get_rand() { return eng(); }
auto print_rand() { std::cout << get_rand(); }

• eng above is a global variable
• They have static storage duration, i.e. they live

for the whole program duration
• They live in the Static Data memory segment
• They are initialized before main is called and

destroyed after main has finished



218

Non-local objects (cont.)

• Initialization
◦ Memory for non-local variables is guaranteed to be at least

initialized to all zeroes
◦ They may be initialized to a constant value known at compile time
◦ They may be initialized dynamically at runtime, e.g. with the

result of a function call
• Warning

◦ Non-local variables make reasoning about the program more
difficult because they encourage to work by side effects

◦ The order of initialization and destruction is deterministic only in
the same translation unit

◦ Better avoid them, especially if mutable (i.e. non constant)



219

Constants

• One useful application of non-local variables is to define
constants, possibly inside a namespace

namespace std::numbers {
inline constexpr double e = · · · ;
inline constexpr double pi = · · · ;
· · ·

}

• inline means that there is only one object in the whole program
(like for function definitions)

◦ to be used if the definitions are in a header file
• constexpr guarantees that the initialization can be done at

compile time
◦ possibly through the execution of a constexpr function (not further

discussed)
◦ it implies const

• Of course constants can be defined locally as well



220

Class static data members

• A class data member declared static is not part of any object of
that class

• A static data member
◦ exists even if there are no objects of that class
◦ has static storage duration
◦ is defined out-of-class . . .
◦ . . . unless it’s declared inline (C++17) or constexpr (which

implies inline) or is a const integral type

struct X {
static int n;

};
// probably in a .cpp file
int X::n = 42;

struct X {
inline static int n = 42;

};



221

Class static data members (cont.)

• A static data member is usually accessed using the scope operator
::

class std::chrono::system_clock {
public:
static constexpr bool is_steady = · · · ;
· · ·

};

std::cout << std::chrono::system_clock::is_steady;

• But if there is an object of that type, one can use the . operator
on that object

std::chrono::system_clock clock;
std::cout << clock.is_steady;



222

Class static member functions

• A class member function declared static is not associated with
any object of that class

• They are similar to normal functions, but defined in the scope of
a class, so that they can access the other members

• A static member function can access static data members, but
cannot access non-static data members

◦ It cannot be declared as const

class std::chrono::system_clock {
public:
static time_point now() { · · · }
· · ·

};
// system_clock::now() could also be defined out-of-class

using namespace std::chrono_literals;
std::this_thread::sleep_until(std::chrono::system_clock::now() + 15ms);



Explicit Memory Management
(Resource Management)



223

Memory layout of a process

• A process is a running program
• When a program is started the operating system brings the

contents of the corresponding file into memory according to
well-defined conventions

◦ Stack
− function local variables
− function call bookkeeping

◦ Heap
− dynamic allocation

◦ Global data
− literals and variables
− initialized and uninitialized (set to 0)

◦ Program instructions



224

Dynamic memory allocation

• It’s not always possible or convenient to construct objects on the
stack, where they would be destroyed at the end of the function
that created them

• An object (array of objects) can be constructed on the free store
(heap)

◦ new expression (for an array: new [])
− allocate memory for the object(s)
− run the object(s) constructor

• The lifetime of an object (array of objects) on the heap is
explictly managed by the developer

◦ explicit destruction of the object(s) when not needed any more
◦ delete expression (for an array: delete [])

− run the object(s) destructor (see later)
− deallocate the memory previously allocated for the object(s)

• Contrast this to the automatic destruction of an object at the
end of the scope when the object is created on the stack



225

Dynamic allocation of an object

auto fun()
{

int n {1234};
int* p = new int{5678};
· · ·
delete p;

}

• delete p gives the area on the
heap back to the system

• delete p does not modify p
• After delete p, the only safe

operation on p is an
assignment

◦ p = · · ·;
• if p is nullptr, delete p is

well defined and does nothing

Stack Heap

fun

1234n

0x4ab0p

5678
0x4ab0



226

Returning a dynamically-allocated object from a function

Sample* create()
{

auto rc = new Sample{};
rc->add(· · ·);
· · ·
return rc;

}

auto use()
{

auto ru = create();
ru->stats();
· · ·
delete ru;

}

Stack Heap

use

create

0xaaccrc

0xaaccru

0xaacc

Note how the lifetime of a dynamically-allocated object is explicitly
managed by the developer



227

(native) Array of objects

Contiguous sequence of homogeneous objects in memory
0x0000 0xffff

124

a[0]

654

a[1]

789

a[2]

0xab00 0xab04 0xab08 0xab0c

0xab0c

b

0xaa00

int a[3] = {123, 456, 789}; // int[3], the size must be a constant
// and can be deduced from the initializer

++a[0];
a[3]; // undefined behavior
// "arrays decay to pointers at the slightest provocation"
auto b = a; // int*, size information lost
assert(b == &a[0]);
++b; // increase by sizeof(int)
assert(b == &a[1]);
*b = 654;
b += 2; // increase by 2 * sizeof(int)
*b; // undefined behavior
if (b == a + 3) { ... } // ok, but not more than this



228

Dynamic allocation of an array of objects

auto fun()
{

int a[3] {12, 34, 56};
int* p = new int[3] {12, 34, 56};
· · ·
delete [] p;

}

• p points to the first element of
the array

• p does not carry “array”
information

Stack Heap

fun

12a[0]

34a[1]

56a[2]

0xed80p

12p[0]

34p[1]

56p[2]

0xed80



229

Dynamic allocation of an array of objects of dynamic size

Arrays allocated on the heap are most useful when their size is
available only at runtime

auto fun()
{

int n;
std::cin >> n;
auto p = new int[n];
· · ·
delete [] p;

}

Stack Heap

fun

· · ·n

0xc408p

p[0]

p[1]

...
...

p[n-1]

0xc408



230

Null-terminated byte strings

• A null-terminated byte string (NTBS) is an array of non-null
characters followed by the null character (char{0} or '\0')

◦ char[] (char*) if characters are modifiable
◦ char const[] (char const*) if characters are not modifiable
◦ Also known as “C-strings”

• The std::strlen function returns the length of an NTBS
◦ Linear complexity, scan the array until '\0' is found

• A string literal has type char const[N], with N constant
◦ For example, the type of "ciao" is char const[5]

• An std::string can be initialized with an NTBS
• To get the NTBS representation of an std::string use the

c_str method
◦ It returns a char const* to the internal array



231

The main function

• The main (special) function is the entry point of a program
• It can have two forms

◦ int main() {· · ·}
◦ int main(int argc, char* argv[]) {· · ·}

• If there is no return statement, an implicit return 0; is
assumed

◦ 0 means success, different from 0 means failure
• argc is the number of arguments on the command line, argv is

an array of C-strings representing the arguments
◦ argv[0] is (usually) the name of the program
◦ argv[argc] is nullptr

• Many libraries exist to parse the command line, e.g. Lyra,
cxxopts, Boost.Program_options

https://github.com/bfgroup/Lyra
https://github.com/jarro2783/cxxopts
https://www.boost.org/doc/libs/release/libs/program_options/


232

Managing raw arrays

• Managing raw arrays correctly is difficult
• Passing an array around makes it decay to a pointer to its first

element, loosing important type information
• How do you pass an array to a function?

◦ Need to pass pointer and size
◦ C++20 introduces std::span

• How do you return an array from a function?
◦ Left as an exercise

• Better use higher-level tools, such as std::string, std::array
and std::vector



233

Weaknesses of a T*

• Critical information is not encoded in the type
◦ Am I the owner of the pointee? Should I delete it?

Shape* s = create_shape(); // (probably) delete

std::string str{"hello"};
char const* cs = str.c_str(); // don't delete
char * cd = str.data(); // don't delete, const is irrelevant

◦ Is the pointee an object or an array of objects? of what size?

Shape* s = create_shapes(); // (probably) delete []

◦ Was it allocated with new, malloc or even something else?
− malloc is a C function that allocates raw memory, which is then

de-allocated passing the pointer to the function free
− e.g. the fopen function returns a FILE*, which will be released

passing it to the fclose function



234

Weaknesses of a T* (cont.)

• Owning pointers are prone to leaks

{
auto p = new Circle{· · ·};
· · ·
// ops, forgot to delete p

}

• Owning pointers are prone to double deletes

{
auto p = new Circle{· · ·};
· · ·
delete p;
· · ·
delete p; // ops, delete again

}



235

Weaknesses of a T* (cont.)

• Owning pointers are unsafe in presence of exceptions

{
auto p = new Circle{· · ·};
· · · // potentially throwing code
delete p; // leak if exception thrown

}

• Runtime overhead, in space and time
◦ dynamic allocation/deallocation
◦ indirection



236

Stack vs Heap: space

struct S {
int n;
float f;
double d;

};

auto foo_s() {
S s;
· · ·

}

auto foo_h() {
S* s = new S;
· · ·

}

foo_s

0x00..00

0xff..ff

st
ac

k
he

ap

Occupancy:
• sizeof(S)

foo_h

0x00..00

0xff..ff

st
ac

k
he

ap

Occupancy:
• sizeof(S) +

sizeof(S*)
• plus new internal space

overhead



237

Stack vs Heap: time

Stack
void stack()
{

int m{123};
· · ·

}

stack():
subq %4, %rsp
movl $123, (%rsp)
· · ·
addq $4, %rsp
ret

Heap
void heap()
{

int* m = new int{123};
· · ·
delete m;

}

heap():
subq $8, %rsp
movl $4, %edi
call operator new(unsigned long)
movl $123, (%rax)
movq %rax, (%rsp)
· · ·
movl $4, %esi
movq %rax, %rdi
call operator delete(void*, unsigned long)
addq $8, %rsp
ret

$ g++ -O3 heap.cpp && ./a.out
1000000 iterations: 0.035745 s

i.e. ~35 ns for each new/delete (on my laptop)



238

Investigating memory problems

• One of the simplest tools to use is the Address Sanitizer (ASan)
• The compiler instruments the executable so that at runtime ASan

can catch many (but not all!) memory problems
• Some space and time overhead at runtime, but acceptable at

least during testing

$ g++ -fsanitize=address leak.cpp
$ ./a.out

=================================================================
==18338==ERROR: LeakSanitizer: detected memory leaks
...



239

Guidelines on dynamic objects

• Do not unnecessarily allocate on the heap, i.e. use the stack
when possible

• If unavoidable, think thoroughly about ownership and use a
resource-managing object, e.g.

◦ containers and strings
◦ smart pointers (see later)

• Ideally the residual meaning of a raw pointer (T*) should be “I’m
pointing to one element and I’m not its owner”



240

Resource management

• Dynamic memory is just one of the many types of resources
manipulated by a program:

◦ thread, mutex, socket, file, . . .
• C++ offers powerful tools to manage resources

◦ "C++ is my favorite garbage collected language because it
generates so little garbage"



241

Destruction

• At the end of a block statement (i.e. when the closing brace } is
encountered) all objects of automatic storage duration are
automatically destroyed

• Destroying an object means
◦ for a class type, a special member function, called destructor, if

present, is run
◦ all the sub-objects (e.g. data members) are destroyed, recursively
◦ the storage is freed

• The order of destruction is the opposite of the order of
construction/definition

◦ a later-defined object can use a previously-defined one

{
S s{· · ·};
· · ·
T t{s};
· · ·

} // t is destroyed first, then s



242

The destructor

• The destructor is a special class member function that is called
when an object of that class goes out of scope and has to be
destroyed

• The purpose of the destructor is to leave no garbage behind
• A class can have only one destructor, declared as ~classname ()

class DynamicArray {
· · ·
int* m_data;

public:
DynamicArray(int n): m_data{new int[n]} {· · ·}
~DynamicArray()
{

delete [] m_data;
}
· · ·

};



243

RAII idiom

• Resource Acquisition Is Initialization
◦ The constructor accepts/acquires a resource
◦ The destructor releases it

• The object is responsible for the correct lifetime management of
that resource

• Guaranteed no leak nor double release, even in presence of
exceptions



244

Controlling copying
• The compiler automatically generates the copy operations for a

class, if used
◦ The copy constructor creates a new object as a copy of another

object

DynamicArray original{· · ·};
auto copy{original}; // auto copy = original

◦ The copy assignment operator changes the value of an existing
object as a copy of another object

DynamicArray v1{· · ·};
DynamicArray v2{· · ·};
v2 = v1;

• Ideally, after a copy the two objects should compare equal
• The generated operations may not be correct, especially in

presence of managed resources (e.g. dynamically-allocated
memory)

• The copy operations can be explicitly provided or suppressed



245

Controlling copying (cont.)

• The copy constructor typically takes an object of the same class
by const reference

DynamicArray(DynamicArray const& other) : · · · {· · ·}

• The copy assignment operator typically:
◦ takes an object of the same class by const reference
◦ returns the object itself by reference
◦ checks for auto-assignment

DynamicArray& operator=(DynamicArray const& other)
{

if (this != &other) {
· · ·

}
return *this;

}



246

Controlling copying (cont.)

class DynamicArray
{

int m_size = 0; int* m_data = nullptr;
public:
DynamicArray(int n, int v = int{}) : m_size{n}, m_data{new int[m_size]}
{ std::fill(m_data, m_data + m_size, v); }
~DynamicArray() { delete[] m_data; }
DynamicArray(DynamicArray const& other)

: m_size{other.m_size}, m_data{new int[m_size]}
{ std::copy(other.m_data, other.m_data + m_size, m_data); }
DynamicArray& operator=(DynamicArray const& other)
{

if (this != &other) {
delete[] m_data;
m_size = other.m_size;
m_data = new int[m_size];
std::copy(other.m_data, other.m_data + m_size, m_data);

}
return *this;

}
· · ·

};



247

Smart pointers

• A smart pointer is an object that behaves like a pointer, but also
manages the lifetime of the pointed-to object (i.e. the pointee)

• It leverages the RAII idiom
◦ Resource Acquisition Is Initialization
◦ Resource (e.g. memory) is acquired in the constructor
◦ Resource (e.g. memory) is released in the destructor



248

Smart pointers (cont.)

template<typename Pointee>
class SmartPointer {

Pointee* m_p;
public:
explicit SmartPointer(Pointee* p): m_p{p} {}
~SmartPointer() { delete m_p; }
Pointee* operator->() { return m_p; }
Pointee& operator*() { return *m_p; }

};

class Sample { · · · };

{
SmartPointer<Sample> sp{new Sample{}};
sp->add(· · ·);
(*sp).stats();

}

At the end of the scope (i.e. at the closing }) sp is destroyed and
its destructor deletes the pointee



249

std::unique_ptr<T>

Standard smart pointer
• Exclusive ownership
• Minimal overhead, if any
• Non-copyable, movable

class Sample { · · · };

void take(std::unique_ptr<Sample> q); // by value

std::unique_ptr<Sample> p{new Sample{}}; // explicit new
auto p = std::make_unique<Sample>(); // better (*)
auto r = p; // error, non-copyable
take(p); // error, non-copyable
auto r = std::move(p); // ok, movable
take(std::move(r)); // ok, movable

(*) The possible arguments passed to make_unique are forwarded
to the constructor



250

Disabling copy operations

• If a class cannot support copy semantics, its copy operations
should be suppressed

• The cleanest way to do it is to mark the copy operations as
= delete

template<typename Pointee>
class UniquePtr {

Pointee* m_p;
public:
explicit UniquePtr(Pointee* p): m_p{p} {}
~UniquePtr() { delete m_p; }
UniquePtr(UniquePtr const&) = delete;
UniquePtr& operator=(UniquePtr const&) = delete;
Pointee* operator->() { return m_p; }
Pointee& operator*() { return *m_p; }

};

• Note that a deleted copy ctor is still a ctor and would disable the
generation of the default ctor

• = delete is a general mechanism that can be applied to any
function



251

Move semantics

• It allows to properly move (i.e. pass) the responsibility of a
resource from one managing object to another

• Mainly driven by optimization considerations but also a solution
to a proper management of resources

• Introduced in the language by C++11, thanks to a new type of
reference, called rvalue reference

• An rvalue reference is identified by the token &&, e.g. int&&



252

Controlling moving

• The compiler automatically generates the move operations for a
class, if used

◦ The move constructor creates a new object, re-using the resources
owned by another object

UniquePtr<int> p{new int{42}};
auto q{std::move(p)}; // auto q = std::move(p)

◦ The move assignment operator changes the value of an existing
object, re-using the resources owned by another object

UniquePtr<int> p{new int{12}};
UniquePtr<int> q{new int{34}};
q = std::move(p);

• std::move enables the use of a move operation instead of the
corresponding copy operation

◦ In practice it’s a static_cast of an lvalue reference to an rvalue
reference



253

Controlling moving (cont.)

• If there are no resources involved, a move operation in fact
becomes a copy operation

• Move operations typically modify the source object, to steal its
internal resources

• After a move the two objects are typically different
• A move should leave the original object in a “valid but unspecified

state”
◦ i.e. the class invariant is preserved
◦ not always easy, especially for the move constructor

• Move operations should be declared noexcept, which means
“this function/operation doesn’t fail” (more or less)

• The automatically generated operations may not be correct
• The move operations can be explicitly provided or suppressed



254

Controlling moving (cont.)

template <typename Pointee> class UniquePtr
{

Pointee* m_p;
public:
explicit UniquePtr(Pointee* p = nullptr) : m_pp {}
~UniquePtr() { delete m_p; }
UniquePtr(UniquePtr const&) = delete;
UniquePtr& operator=(UniquePtr const&) = delete;
UniquePtr(UniquePtr&& other) noexcept

: m_p{std::exchange(other.m_p, nullptr)}
{
}
UniquePtr& operator=(UniquePtr&& other) noexcept
{

delete m_p;
m_p = std::exchange(other.m_p, nullptr);
return *this;

}
· · ·

};



255

Controlling moving (cont.)

• The move constructor typically takes an object of the same class
by (non-const!) rvalue reference

UniquePtr(UniquePtrs&& other) : · · · {· · ·}

• The move assignment operator typically:
◦ takes an object of the same class by (non-const) rvalue reference
◦ returns the object itself by reference
◦ does not check for auto-assignment

UniquePtr& operator=(UniquePtr&& other)
{
· · ·
return *this;

}



256

Special member functions

• A class has five special member functions
◦ Plus the default constructor

class MyClass {
MyClass(MyClass const&); // copy constructor
MyClass& operator=(MyClass const&); // copy assignment
MyClass(MyClass&&); // move constructor
MyClass& operator=(MyClass&&); // move assignment
~MyClass(); // destructor

};

• The compiler can generate them automatically according to some
convoluted rules

◦ The behavior depends on the behavior of data members
• General guidelines:

Rule of zero Don’t declare them and rely on the compiler
Rule of five If you need to declare one, declare them all

◦ Consider using =default and =delete



257

std::shared_ptr<T>

Standard smart pointer
• Shared ownership (reference counted)
• Some space and time overhead

◦ for the management, not for access
• Copyable and movable

class Sample { · · · };

void take(std::shared_ptr<Sample> q); // by value

std::shared_ptr<Sample> p{new Sample{}}; // explicit new
auto p = std::make_shared<Sample>(); // better (*)
auto s = p; // ok, copyable
take(p); // ok, copyable
auto s = std::move(p); // ok, movable
take(std::move(s)); // ok, movable

(*) The possible arguments passed to make_shared are forwarded
to the constructor



258

Using smart pointers

• Give an owning raw pointer (e.g. the result of a call to new) to a
smart pointer as soon as possible

• Prefer unique_ptr unless you need shared_ptr
◦ You can always move a unique_ptr into a shared_ptr
◦ But not viceversa

• Access to the raw pointer is available
◦ e.g. to pass to legacy APIs
◦ smart _ptr<T>::get()

− returns a non-owning T*
◦ unique_ptr<T>::release()

− returns an owning T*
− must be explicitly managed

• Arrays are supported

std::unique_ptr<int[]> p{new int[n]}; // destructor calls 'delete []'



259

Smart pointers and functions
Pass a smart pointer to a function only if the function needs to rely
on the smart pointer itself
• by value of a unique_ptr, to transfer ownership

void take(std::unique_ptr<Sample> q);
auto p = std::make_unique<Sample>();
take(p); // error
take(std::move(p)); // ok

• by value of a shared_ptr, to keep the resource alive

auto s = std::make_shared<Sample>();
std::thread t{[=] { do_something_with(s); }};

• by reference (possibly const), to interact with the smart pointer
itself

void print_count(std::shared_ptr<Sample> const& s) {
std::cout << s.use_count() << '\n';

}
auto s = std::make_shared<Sample>();
print_count(s);



260

Smart pointers and functions (cont.)

• Otherwise pass the pointee by (const) reference/pointer

void stats(std::shared_ptr<Sample> s) { if (s) s->stats(); }
void stats(Sample* t) { if (t) t->stats(); } // better
void stats(Sample& t) { t.stats(); } // better

auto s = std::make_shared<Sample>();
stats(s);
stats(s->get());
if (s) stats(*s);

• Return a smart pointer from a function if the function has
dynamically allocated a resource that is passed to the caller

auto create() { return std::make_unique<Sample>(); }

auto u = create(); // std::unique_ptr<Sample>
std::shared_ptr<Sample> s = std::move(u);

std::shared_ptr<Sample> s = create();



261

Smart pointer custom deleter

• A smart pointer is a general-purpose resource handler
• The resource release is not necessarily done with delete
• unique_ptr and shared_ptr support a custom deleter

FILE* f = std::fopen(· · ·);
· · ·
std::fclose(f);

Usual problems:

• Who owns the resource?
• Forgetting to release

• Releasing twice
• Early return/throw

std::shared_ptr<FILE> file{
std::fopen(· · ·), // pointer
[](FILE* f) { std::fclose(f); } // deleter

};



262

Taxonomy of STL Containers

Sequence The client decides where an element gets inserted
• array, deque, forward_list, list, vector

Associative The container decides where an element gets inserted
Ordered The elements are sorted based on a key

• map, multimap, set, multiset
Unordered The position of an element depends on

the hash of its key
• unordered_map,

unordered_multimap,
unordered_set,
unordered_multiset



263

Sequence containers

std::array

foo

0x00..00

0xff..ff

st
ac

k
he

ap

std::vector

foo

0x00..00

0xff..ff

st
ac

k
he

ap

std::list

foo

0x00..00

0xff..ff

st
ac

k
he

ap



264

Sequence containers (cont.)

• std::array
◦ fixed size, contiguous in memory
◦ typical operations

− operator[]
− iteration with begin/end

• std::vector
◦ dynamic size, contiguous in memory
◦ typical operations

− push_back
− operator[]
− iteration with begin/end

• std::list
◦ dynamic size, non-contiguous in memory, iterator stability
◦ typical operations

− push_back, push_front, insert
− iteration with begin/end



265

Associative ordered containers

• They contain ordered values (set and multiset) or key-value
pairs (map and multimap)

• Search, removal and insertion have logarithmic complexity
• Typically implemented as balanced (red-black) trees

By Cburnett – Own work, CC BY-SA 3.0
https://commons.wikimedia.org/w/index.php?curid=1508398

value

color

parent
left

right



Dynamic polymorphism



266

Polymorphism

The provision of a single interface to entities of different types
static Based on concepts and templates

template<class Iterator, class T>
Iterator std::find(Iterator f, Iterator l, T const& v);

std::vector<int> v{· · ·};
auto it = std::find(v.begin(), v.end(), 12);

std::list<Command> l{· · ·};
auto it = std::find(l.begin(), l.end(), Command{"send"});

dynamic Based on inheritance and virtual functions



267

Inheritance

struct Base {
int a;
Base(int a) : a{a} {}
void f();
int operator()() const;

};

struct Derived : Base {
double d;
Derived(int i, double d)

: Base{i+1}, d{d} {}
int h() const;

};

Derived de{42, 3.14};
de.d;
de.h();
de.a; // Base::a
de.f(); // Base::f
de(); // Base::operator()
Base* b1 = &de;
Base& b2 = de;

• A class may be declared as derived
from one or more base classes

◦ A hierarchy can be formed
• Members of the base class are also

members of the derived class
◦ Let’s ignore access control

(private, public) for the moment
• Constructing a Derived object

constructs also the corresponding
Base sub-object, either explicitly (like
in this case) or implicitly

• Derived* can be implicitly converted
to Base*

• A Derived object can bind to Base&



268

Dynamic polymorphism

Typical use case: a graphics system of shapes

struct Circle { // is a Shape
Point c;
double r;
void move(Point p);
Point where() const;

};

struct Rectangle { // is a Shape
Point ul;
Point lr;
void move(Point p);
Point where() const;

};

std::vector<Shape > shapes; // I wish I could do this
for (auto const& s : shapes) { s.where(); } // wish
for (auto& s : shapes) { s.move(Point{1,2}); } // wish

Let’s ignore access control (private, public) for a moment



270

Dynamic polymorphism (cont.)

struct Shape { // abstract base class
virtual Point where() const = 0; // pure virtual function
virtual ~Shape(); // virtual dtor; no '= 0' here

};

struct Circle : Shape { // derived class
Point c;
int r;
Point where() const override;

};

struct Rectangle : Shape { // derived class
Point ul;
Point lr;
Point where() const override;

};

Shape* create_shape(); // return new Circle/Rectangle
auto s = create_shape();
s->where();
delete s; // better use a smart pointer



271

Dynamic polymorphism (cont.)

• A non-static member function (i.e. a method) is a virtual
function if it is first declared with the keyword virtual or if it
overrides a virtual member function declared in a base class

• A class with a virtual member function is called a polymorphic
class.

• Virtual functions support dynamic binding and object-oriented
programming

◦ A call to a virtual function made through a pointer/reference to a
base class is dispatched to the corresponding function of the actual
derived class object behind that pointer/reference

• Overridden functions must have the same signature
◦ Beware of member function hiding



272

Dynamic polymorphism (cont.)

• A virtual function is pure if its declaration ends with = 0
◦ A pure virtual function cannot be defined (i.e. have an

implementation) – with one exception (see later)
• A class is abstract if it has at least one pure virtual function

◦ No objects of an abstract class can be created
◦ An abstract class is typically used to represent an interface



273

Dynamic polymorphism (cont.)

struct Base {
virtual void f(int) = 0;

};

struct Derived : Base {
void f(int) override {· · ·}

};

Base b; // error
Base* b1 = new Derived; // ok, owning pointer, remember to delete
b1->f(0); // calls Derived::f
Derived d; // ok
Base* b2 = &d // ok, non-owning pointer, don't delete
b2->f(0); // calls Derived::f
Base& b3 = d; // ok
b3.f(0); // calls Derived::f



275

Mixing interface and implementation

struct Shape {
Point p;
Shape(Point p) : p{p} {}
virtual ~Shape();
virtual Point where() const { return p; } // not pure; default implementation

};

struct Circle : Shape {
int r;
Circle(Point p, double d) : Shape{p}, r{d} {}
// where() implementation is inherited from Shape

};

struct Rectangle : Shape {
Point lr;
Rectangle(Point p1, Point p2) : Shape{p1}, lr{p2} {}
Point where() const override { return (p + lr) / 2; } // p is inherited

};

Not recommended, especially for data members



276

Example: SFML



277

An example from the Standard Libary: I/O streams

namespace std {
using istream = basic_istream<char>;
using ostream = basic_ostream<char>;
using istringstream = basic_istringstream<char>;
using ostringstream = basic_ostringstream<char>;
using ifstream = basic_ifstream<char>;
using ofstream = basic_ofstream<char>;
· · ·
istream cin;
ostream cout;

}



278

I/O Streams

• C++ provides an Input/Output library based on the concept of
streams, which abstract input/ouput devices

• std::cin and std::cout are streams attached to the standard
input and output of the program (typically attached to the
terminal)

• Other stream classes allow I/O from/to files and strings
• Since they are part of a polymorphic hierarchy these objects can

be passed to functions implemented in terms of the base class
◦ For example the streaming operators << and >>



279

File I/O

std::ifstream is{"/tmp/in"}; // open /tmp/in for reading
std::ofstream os{"/tmp/out"}; // open /tmp/out for writing
if (!is || !os) {

// manage error
}
double d;
while (is >> d) {

os << std::setw(12) << d * 2 << '\n';
}

• fstream constructor opens the file, destructor closes it
• There are explicit open and close methods
• Many other operations/options (mostly inherited)



280

String I/O

std::istringstream is{"12. 14. -42."};
std::ostringstream os;

double d;
while (is >> d) {

os << std::setw(12) << d * 2 << '\n';
}

std::cout << os.str();
// " 24\n 28\n -84\n"

• stringstream constructor possibly allocates memory, destructor
deallocates

• The str method can be used to get/set the contents of the
stringstream

• Many other operations/options (mostly inherited)



281

operator<<

• operator<< is usually implemented as a free function
◦ Note that the object we want to stream is the second parameter

class Complex {
double r;
double i;

public:
double real() const;
double imag() const;
· · ·

};

inline std::ostream& operator<<(std::ostream& os, Complex const& c)
{

os << '(' << c.real() << ',' << c.imag() << ')';
return os;

}

• To be more general, it should actually be a function template and
accept/return std::basic_ostream<· · ·>



282

friend functions
• Sometimes a free function (e.g. operator<< needs private data

that are not exposed (or not exposed efficiently) via the public
interface

• In that case it can be implemented as a friend free function
class Complex {

double r; double i;
public:
friend std::ostream& operator<<(std::ostream& os, Complex const& c) {

os << '(' << c.r << ',' << c.i << ')';
return os;

}
· · ·

};

• Note how the function, being defined inside the class definition, is
automatically inline

• It can be just declared inside the class definition and be defined
outside, even in another file

• friendship has a much broader usage than shown here
◦ E.g. a whole class can be friend of another



283

Another example from the Standard Library: Exceptions

Note: the hierarchy is incomplete



284

Multiple exception-catch clauses

• A try-block can have multiple catch clauses
• The first that matches the type of the exception is chosen
• The order is important: put the more specific ones first

auto read_from(std::filesystem::path const& p) {
std::ifstream is(p);
if (!is) {

throw std::filesystem::filesystem_error{
"read_from", p, std::make_error_code(std::errc::invalid_argument)

};
}
· · ·

}

int main() {
try {

read_from("/tmp/data");
· · ·

} catch (std::filesystem::filesystem_error const& e) {
std::cerr << e.path1(); return EXIT_FAILURE;

} catch (std::exception const& e) {
std::cerr << e.what(); return EXIT_FAILURE;

} catch (...) { // it's really three dots!
std::cerr << "unknown exception"; return EXIT_FAILURE;

}
}



285

Overriding vs hiding

struct Base {
virtual void f(int);

};

struct Derived : Base {
void f(int); // overriding, virtuality is "inherited"

};

Derived d;
Base& b = d;
b.f(1); // call Derived::f(int)

• A virtual function should specify exactly one of virtual,
override, or final

• A final virtual function cannot be overridden in a derived class
• A class can be declared final and cannot be derived from
struct Derived final { · · · };



286

Overriding vs hiding (cont.)

struct Base
{

virtual void f(int);
};

struct Derived : Base
{

virtual void f(unsigned); // this is another function, hiding Base::f
};

Derived d;
Base& b = d;
b.f(1); // call Base::f(int)
b.f(1U); // call Base::f(int)
d.f(1); // call Derived::f(unsigned)
d.f(1U); // call Derived::f(unsigned)

• Virtual functions should specify exactly one of virtual,
override, or final

• Specifying override (or final) would have caused a
compilation error



287

Overriding vs hiding (cont.)

struct Base
{

virtual void f(int) const;
};

struct Derived : Base
{

virtual void f(int); // this is another function, hiding Base::f
};

Derived d;
Base& b = d;
b.f(1); // call Base::f(int) const

• Virtual functions should specify exactly one of virtual,
override, or final

• Specifying override (or final) would have caused a
compilation error



288

Slicing

A base class without pure virtual functions is not abstract any more
• It can be instantiated
• It can be copied

◦ unless precautions are taken, e.g. copy/move operations are
deleted

struct Shape
{

Point p;
Shape(Point p): p{p} {}
virtual ~Shape() = default;
virtual Point where() const { return p; }

};

struct Rectangle : Shape {· · ·};

Shape s; // desirable?
Shape s2 = s1; // desirable?
Rectangle rect{· · ·};
Shape s = rect; // desirable??



289

Slicing (cont.)

void process1(Shape& shape) // by reference
{
· · · shape.where() · · · // Point{2., 4.}

}

void process2(Shape shape) // by value
{
· · · shape.where() · · · // Point{1., 7.}

}

auto rect = Rectangle{Point{1., 7.}, Point{3., 1.}};
process1(rect);
process2(rect);

• When an object obj of a derived class is passed to a function
that takes a parameter of a base class by value, only the base
class sub-object of obj is passed to the function



290

Keeping the base class abstract

• It’s good practice to keep base classes abstract
• A base class without pure virtual functions is not abstract any

more
• To prevent this, declare the destructor as pure virtual
• Yet the destructor needs to be defined

◦ So that derived classes are properly destroyed

struct Shape {
Point ul;
Shape(Point p): p{p} {}
virtual ~Shape() = 0;
virtual Point where() const; // non-pure virtual function

};
inline Shape::~Shape() = default; // or any other implementation

Shape s; // not really desirable



291

Access control

A member of a class can be
public Its name can be used anywhere without access

restriction
private Its name can be used only by members and friends

of the class in which it is declared
protected Its name can be used only by members and friends of

the class in which it is declared, by classes derived
from that class, and by their friends



292

Accessibility through derivation

class Base {
private:
· · ·

protected:
· · ·

public:
· · ·

};

class Derived : public|private|protected Base {};

Derivation itself can be
public public in B → public in D

protected in B → protected in D
• Sub-typing (is-a relationship)
• This is the one you should use

private public or protected in B → private in D
• Implementation inheritance

protected public or protected in B → protected in D
• Rarely, if ever, used



294

protected access

class Shape {
protected:
Point p;

public:
Shape(Point p) : p{p} {}
virtual ~Shape() = default;
virtual Point where() const { return p; }
virtual double area() const = 0;

};

class Rectangle : public Shape { // is-a
private:
Point lr;

public:
Rectangle(Point p1, Point p2) : Shape{p1}, lr{r} {}
double area() const override { · · · std::abs(p.x - lr.x) · · · }

};

• protected and public members represent an interface
• Data members are a poor interface, keep them private



295

Structural inheritance

• Inheritance is applicable also in non-polymorphic situations
• To reuse and possibly extend the implementation and the

interface of a class
• A way to create a distinct type with the same implementation

and interface of another
• Consider composition, i.e. a member, or private inheritance

class Vector : public std::vector<int> {
using std::vector<int>::vector; // inherit constructors

};

void process(std::vector<int>&); // #1
void process(Vector&); // #2
void signal(std::vector<int>&); // #3

std::vector<int> v1{· · ·};
Vector v2{· · ·}; // all std::vector ctors are available
process(v1); // call #1
process(v2); // call #2
signal(v2); // call #3



296

Destruction and inheritance

• In case of polymorphic inheritance, the destructor of a base class
should be

◦ public and virtual, or
◦ protected and non-virtual

• In case of structural inheritance, don’t delete through a pointer to
the base class

class Vector : public std::vector<int> {};

Vector v; // ok

Vector* pv = new Vector;
delete pv; // ok

std::vector<int>* ps = new Vector;
delete ps; // undefined behavior



297

Copying/moving and inheritance

• Dynamic polymorphism and value semantics don’t play well
together

◦ See slicing
• The copy/move operations of a base class shouldn’t be publicly

accessible, but they need to be accessible to a derived class
◦ Declare them protected

class Base
{
· · ·

protected:
Base(Base const&);
Base& operator=(Base const&);
Base(Base&&);
Base& operator=(Base&&);

public:
· · ·

};



298

Copying/moving and inheritance (cont.)

• If you need some form of deep copy, consider providing a virtual
clone operation

class Base
{

public:
virtual Base* clone() const = 0;

};

class Derived: public Base
{

public:
Derived* clone() const override
{

return new Derived{*this}; // call the copy ctor of Derived
}

};

• Note the return type: an overridden function can return a derived
class

◦ co-variant return type



Epilog



299

What we have learnt in this course

• Introduction to Linux
• Elements of computer architecture and operating systems
• Why C++
• Objects, types, variables
• Expressions
• Statements and structured programming
• Functions and function objects
• User-defined types and classes and operator overloading
• Generic programming and templates
• The Standard Library, containers and algorithms
• Dynamic memory allocation and resource management
• Dynamic polymorphism (aka object-oriented programming)
• Error management
• Elements of software engineering and supporting tools



300

Where to go from here

• C++ is a large and complex language and has a large and
complex standard library

◦ Many more libraries are available from third parties
◦ See, for example, vcpkg or conan

• We have just scratched the surface of what the language and the
libraries provide

• There are many high-quality resources to go deeper
◦ Learn C++

◦ News, Status & Discussion about Standard C++

◦ C++ reference
◦ C++ Core Guidelines
◦ C++ Conference (presentations, videos)
◦ C++ Now Conference (presentations, videos)
◦ Meeting C++ Conference (presentations, videos)
◦ Italian C++ Community
◦ C++ Weekly
◦ Existing source code (e.g. boost libraries or SFML)

https://vcpkg.io/
https://conan.io/
https://www.learncpp.com/
https://isocpp.org/
https://cppreference.com/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://cppcon.org/
https://github.com/cppcon
https://youtube.com/cppcon
https://cppnow.org/
https://github.com/boostcon
https://youtube.com/boostcon
https://meetingcpp.com/
https://meetingcpp.com/mcpp/slides/
https://www.youtube.com/c/MeetingCPP
https://italiancpp.org/
https://www.youtube.com/@cppweekly
https://www.boost.org/
https://www.sfml-dev.org/

	Introduction
	Bibliography and useful online resources
	Course outline
	Elements of computer architecture
	The language of a computer
	Many types of computers
	Many types of computers (cont.)
	Many types of computers (cont.)
	Many types of computers (cont.)
	Computers understand a binary language
	Programming language
	Programming language (cont.)
	The Von Neumann architecture
	The Von Neumann architecture (cont.)
	Also data are binary
	Basics
	C++
	A minimal C++ program
	A minimal C++ program (cont.)
	Spaces
	Syntax check
	Comments
	Basic notions of Input and Output
	Hello
	Objects
	Types
	Types (cont.)
	Fundamental types
	int
	Identifiers
	Keywords
	Variables
	Literals
	Integer literals
	std::string
	Expressions
	Operators
	Flow control
	Algorithm
	Sum of two numbers
	Statement
	Sum of two numbers
	Expression statement
	Compound statement (or block)
	Declaration statement
	Scope
	Block scope
	The smallest of two numbers
	if then else
	bool
	Logical operations
	Example: is a number even?
	Exercise: the smallest of three numbers
	Integer square root
	while loop
	Sum of the first N numbers
	for loop
	for loop (cont.)
	Integer square root with a for loop
	Exercise: the largest/smallest of N numbers
	double
	float
	Handle floating-point numbers with care
	Exercise: accumulate 0.001
	Standard mathematical functions
	Type conversions
	const-safety
	Functions
	Functions
	The isqrt function
	Function declaration
	Function declaration (cont.)
	Returning from a function
	Returning from a function (cont.)
	Invoking a function
	Invoking a function (cont.)
	Function definition
	Recursive functions
	Function overloading
	The main function
	Exercises
	How do we know the code we write is correct?
	How to use Doctest
	Memory layout of a process
	Functions and the stack
	Pass by-value, return by-value
	Stack frame
	Conditional/ternary operator expression
	break and continue for loops
	Object initialization with braces
	char
	Exercises
	Pointers and references
	Passing by value may be inconvenient
	Passing by value may be expensive
	Hexadecimal notation
	Pointers
	Pointers (cont.)
	Pointers (cont.)
	Passing a pointer
	References
	References (cont.)
	Passing by reference
	Passing by reference (cont.)
	const and references
	const and pointers
	How to pass arguments to functions
	Returning a reference
	range-for loop
	auto
	auto/trailing return type
	Enumerations
	Enumerations (cont.)
	Enumerations (cont.)
	The switch statement
	The switch statement (cont.)
	The switch statement (cont.)
	Data abstraction
	Data abstraction
	Data structure
	Operations
	Operator overloading
	Exercises
	More data abstraction
	Private representation, public interface
	Construction
	Private representation, public interface (cont.)
	Private representation, public interface (cont.)
	Private representation, public interface (cont.)
	Private representation, public interface (cont.)
	Member vs free function
	std::string (cont.)
	Construction (cont.)
	Construction (cont.)
	Construction (cont.)
	Construction (cont.)
	explicit constructor
	explicit constructor (cont.)
	Pointers and data structures
	The this pointer
	operator@ in terms of operator@=
	Example: rational numbers
	Example: rational numbers (cont.)
	Class invariant
	assert
	assert (cont.)
	assert (cont.)
	Exceptions
	Exceptions (cont.)
	Exceptions in constructors
	Exceptions in constructors (cont.)
	Nested class
	Type alias
	Type alias (cont.)
	Structured binding
	Templates
	Class template
	Class template (cont.)
	Class template (cont.)
	Function template
	Function template (cont.)
	Function template (cont.)
	Template argument deduction
	Template argument deduction (cont.)
	Exercises
	Non-type template parameters
	The C++ Standard Library
	Namespaces
	Namespaces (cont.)
	Namespaces (cont.)
	The C++ standard library
	Containers of objects
	std::vector<T>
	std::vector<T> (cont.)
	std::vector<T> (cont.)
	Iterators and ranges
	Operations on iterators
	Operations on iterators (cont.)
	Operations on iterators (cont.)
	Operations on iterators (cont.)
	Example: add all elements of a vector (Iteration on a container)
	std::vector<T> (cont.)
	std::vector<T> (cont.)
	std::array<T, N>
	std::array<T, N> (cont.)
	Type aliases (cont.)
	Algorithms
	Generic programming
	Concepts
	Hierarchy of iterators
	Examples of algorithms
	Algorithms in action
	Why using standard algorithms
	Computational complexity
	Computational complexity (cont.)
	Functions
	Algorithms and functions
	Function objects
	Function objects (cont.)
	Function objects (cont.)
	Lambda expression
	Lambda closure
	Lambda capture
	Lambda explicit return type
	Generic lambda
	Lambda: const and mutable
	Lambda: dangling reference
	Exercises
	std::function
	Compilation model
	The C++ compilation model
	The C++ compilation model (cont.)
	The C++ compilation model (cont.)
	Definition vs Declaration
	Definition vs Declaration (cont.)
	One-Definition Rule (ODR)
	Definition vs Declaration during compilation and linking
	Header and source files
	Header and source files (cont.)
	Member functions defined outside the class
	Member functions defined outside the class (cont.)
	Include guards
	To inline or not to inline?
	Build systems
	CMake
	Static data and functions
	Non-local objects
	Non-local objects (cont.)
	Constants
	Class static data members
	Class static data members (cont.)
	Class static member functions
	Explicit Memory Management (Resource Management)
	Memory layout of a process
	Dynamic memory allocation
	Dynamic allocation of an object
	Returning a dynamically-allocated object from a function
	(native) Array of objects
	Dynamic allocation of an array of objects
	Dynamic allocation of an array of objects of dynamic size
	Null-terminated byte strings
	The main function
	Managing raw arrays
	Weaknesses of a T*
	Weaknesses of a T* (cont.)
	Weaknesses of a T* (cont.)
	Stack vs Heap: space
	Stack vs Heap: time
	Investigating memory problems
	Guidelines on dynamic objects
	Resource management
	Destruction
	The destructor
	RAII idiom
	Controlling copying
	Controlling copying (cont.)
	Controlling copying (cont.)
	Smart pointers
	Smart pointers (cont.)
	std::unique_ptr<T>
	Disabling copy operations
	Move semantics
	Controlling moving
	Controlling moving (cont.)
	Controlling moving (cont.)
	Controlling moving (cont.)
	Special member functions
	std::shared_ptr<T>
	Using smart pointers
	Smart pointers and functions
	Smart pointers and functions (cont.)
	Smart pointer custom deleter
	Taxonomy of STL Containers
	Sequence containers
	Sequence containers (cont.)
	Associative ordered containers
	Dynamic polymorphism
	Polymorphism
	Inheritance
	Dynamic polymorphism
	Dynamic polymorphism (cont.)
	Dynamic polymorphism (cont.)
	Dynamic polymorphism (cont.)
	Dynamic polymorphism (cont.)
	Mixing interface and implementation
	Example: SFML
	An example from the Standard Libary: I/O streams
	I/O Streams
	File I/O
	String I/O
	operator<<
	friend functions
	Another example from the Standard Library: Exceptions
	Multiple exception-catch clauses
	Overriding vs hiding
	Overriding vs hiding (cont.)
	Overriding vs hiding (cont.)
	Slicing
	Slicing (cont.)
	Keeping the base class abstract
	Access control
	Accessibility through derivation
	protected access
	Structural inheritance
	Destruction and inheritance
	Copying/moving and inheritance
	Copying/moving and inheritance (cont.)
	Epilog
	What we have learnt in this course
	Where to go from here

